31 research outputs found

    Capsule endoscopy of the future: What's on the horizon?

    Get PDF
    Capsule endoscopes have evolved from passively moving diagnostic devices to actively moving systems with potential therapeutic capability. In this review, we will discuss the state of the art, define the current shortcomings of capsule endoscopy, and address research areas that aim to overcome said shortcomings. Developments in capsule mobility schemes are emphasized in this text, with magnetic actuation being the most promising endeavor. Research groups are working to integrate sensor data and fuse it with robotic control to outperform today's standard invasive procedures, but in a less intrusive manner. With recent advances in areas such as mobility, drug delivery, and therapeutics, we foresee a translation of interventional capsule technology from the bench-top to the clinical setting within the next 10 years

    A compact targeted drug delivery mechanism for a next generation wireless capsule endoscope

    Get PDF
    This paper reports a novel medication release and delivery mechanism as part of a next generation wireless capsule endoscope (WCE) for targeted drug delivery. This subsystem occupies a volume of only 17.9mm3 for the purpose of delivering a 1 ml payload to a target site of interest in the small intestinal tract. An in-depth analysis of the method employed to release and deliver the medication is described and a series of experiments is presented which validates the drug delivery system. The results show that a variable pitch conical compression spring manufactured from stainless steel can deliver 0.59 N when it is fully compressed and that this would be sufficient force to deliver the onboard medication

    A Review of Locomotion Systems for Capsule Endoscopy

    Get PDF
    Wireless capsule endoscopy for gastrointestinal (GI) tract is a modern technology that has the potential to replace conventional endoscopy techniques. Capsule endoscopy is a pill-shaped device embedded with a camera, a coin battery, and a data transfer. Without a locomotion system, this capsule endoscopy can only passively travel inside the GI tract via natural peristalsis, thus causing several disadvantages such as inability to control and stop, and risk of capsule retention. Therefore, a locomotion system needs to be added to optimize the current capsule endoscopy. This review summarizes the state-of-the-art locomotion methods along with the desired locomotion features such as size, speed, power, and temperature and compares the properties of different methods. In addition, properties and motility mechanisms of the GI tract are described. The main purpose of this review is to understand the features of GI tract and diverse locomotion methods in order to create a future capsule endoscopy compatible with GI tract properties

    Experimental Investigation of the Vibro-impact Capsule System

    Get PDF
    Dr. Yang Liu would like to acknowledge the financial support for the Small Research Grant (31841) by the Carnegie Trust for the Universities of Scotland. This work is also partially supported by the National Natural Science Foundation of China (Grant Nos. 11672257 and 11402224), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20161314).Peer reviewedPublisher PD

    Macro-Scale Tread Patterns for Traction in the Intestine

    Get PDF
    Goal: Tread patterns are widely used to increase traction on different substrates, with the tread scale, geometry and material being tailored to the application. This work explores the efficacy of using macro-scale tread patterns for a medical application involving a colon substrate - renowned for its low friction characteristics. Methods: Current literature was first summarized before an experimental approach was used, based on a custom test rig with ex vivo porcine colon, to assess different macro-scale tread patterns. Performance was based on increasing traction while avoiding significant trauma. Repeated testing (n = 16) was used to obtain robust results. Results: A macro-scale tread pattern can increase the traction coefficient significantly, with a static traction coefficient of 0.74 ± 0.22 and a dynamic traction coefficient of 0.35 ± 0.04 compared to a smooth (on the macro-scale) Control (0.132 ± 0.055 and 0.054 ± 0.015, respectively). Decreasing the scale and spacing between the tread features reduced apparent trauma but also reduced the traction coefficient. Conclusion: Significant traction can be achieved on colon tissue using a macro-scale tread but a compromise between traction (large feature sizes) and trauma (small feature sizes) may have to be made. Significance: This work provides greater insight into the complex frictional mechanisms of the intestine and gives suggestions for developing functional tread surfaces for a wide range of clinical applications

    RollerBall: a mobile robot for intraluminal locomotion

    Get PDF
    There are currently a number of major drawbacks to using a colonoscope that limit its efficacy. One solution to this may be to use a warm liquid to distend the colon during inspection. Another is to replace the colonoscope with a small mobile robot – a solution many believe is the future of gastrointestinal intervention. This paper presents RollerBall, an intraluminal robot that uses wheeled-locomotion to traverse the length of a fluid-filled colon. The device provides a central, stable platform within the lumen for the use of diagnostic and therapeutic tools. The concept is described in detail and the feasibility demonstrated in a series of tests in a synthetic colon

    Wireless Robotic Capsule for Releasing Bioadhesive

    Get PDF
    A novel, miniature wireless robotic capsule for releasing bioadhesive patches in the gastrointestinal (GI) tract was designed, fabricated, and preliminarily tested. In particular, the assembled prototype was successfully navigated in a GI phantom, up to a target site where the release mechanism was verified. Then, deployment of a bioadhesive patch onto ex vivo porcine tissue was accomplished, and patch adhesion strength was verified. The main application of the present system is the deployment of anchoring patches for miniature robotic modules to be operated in the targeted anatomical domain. Such an innovative application stems from the wise blend of robotics and bioadhesion. Obtained results, which are consistent with previous investigations by the group, confirm the viability of the adopted bioadhesives for the envisaged anchoring tasks. The present feasibility study complies with the spirit of minimally invasive, wireless diagnosis, and therapy, and provides a preliminary contribution for their advancement
    corecore