11,438 research outputs found

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    The future of social is personal: the potential of the personal data store

    No full text
    This chapter argues that technical architectures that facilitate the longitudinal, decentralised and individual-centric personal collection and curation of data will be an important, but partial, response to the pressing problem of the autonomy of the data subject, and the asymmetry of power between the subject and large scale service providers/data consumers. Towards framing the scope and role of such Personal Data Stores (PDSes), the legalistic notion of personal data is examined, and it is argued that a more inclusive, intuitive notion expresses more accurately what individuals require in order to preserve their autonomy in a data-driven world of large aggregators. Six challenges towards realising the PDS vision are set out: the requirement to store data for long periods; the difficulties of managing data for individuals; the need to reconsider the regulatory basis for third-party access to data; the need to comply with international data handling standards; the need to integrate privacy-enhancing technologies; and the need to future-proof data gathering against the evolution of social norms. The open experimental PDS platform INDX is introduced and described, as a means of beginning to address at least some of these six challenges

    Cloud service localisation

    Get PDF
    The essence of cloud computing is the provision of software and hardware services to a range of users in dierent locations. The aim of cloud service localisation is to facilitate the internationalisation and localisation of cloud services by allowing their adaption to dierent locales. We address the lingual localisation by providing service-level language translation techniques to adopt services to dierent languages and regulatory localisation by providing standards-based mappings to achieve regulatory compliance with regionally varying laws, standards and regulations. The aim is to support and enforce the explicit modelling of aspects particularly relevant to localisation and runtime support consisting of tools and middleware services to automating the deployment based on models of locales, driven by the two localisation dimensions. We focus here on an ontology-based conceptual information model that integrates locale specication in a coherent way

    Social Media for Cities, Counties and Communities

    Get PDF
    Social media (i.e., Twitter, Facebook, Flickr, YouTube) and other tools and services with user- generated content have made a staggering amount of information (and misinformation) available. Some government officials seek to leverage these resources to improve services and communication with citizens, especially during crises and emergencies. Yet, the sheer volume of social data streams generates substantial noise that must be filtered. Potential exists to rapidly identify issues of concern for emergency management by detecting meaningful patterns or trends in the stream of messages and information flow. Similarly, monitoring these patterns and themes over time could provide officials with insights into the perceptions and mood of the community that cannot be collected through traditional methods (e.g., phone or mail surveys) due to their substantive costs, especially in light of reduced and shrinking budgets of governments at all levels. We conducted a pilot study in 2010 with government officials in Arlington, Virginia (and to a lesser extent representatives of groups from Alexandria and Fairfax, Virginia) with a view to contributing to a general understanding of the use of social media by government officials as well as community organizations, businesses and the public. We were especially interested in gaining greater insight into social media use in crisis situations (whether severe or fairly routine crises, such as traffic or weather disruptions)

    A generic privacy ontology and its applications to different domains

    Get PDF
    Privacy is becoming increasingly important due to the advent of e-commerce, but is equally important in other application domains. Domain applications frequently require customers to divulge many personal details about themselves that must be protected carefully in accordance with privacy principles and regulations. Here, we define a privacy ontology to support the provision of privacy and help derive the level of privacy associated with transactions and applications. The privacy ontology provides a framework for developers and service providers to guide and benchmark their applications and systems with regards to the concepts of privacy and the levels and dimensions experienced. Furthermore, it supports users or data subjects with the ability to describe their own privacy requirements and measure them when dealing with other parties that process personal information. The ontology developed captures the knowledge of the domain of privacy and its quality aspects, dimensions and assessment criteria. It is composed of a core ontology, which we call generic privacy ontology and application domain specific extensions, which commit to some of application domain concepts, properties and relationships as well as all of the generic privacy ontology ones. This allows for an evaluation of privacy dimensions in different application domains and we present case studies for two different application domains, namely a restricted B2C e-commerce scenario as well as a restricted hospital scenario from the medical domain

    Semantic Privacy Policies for Service Description and Discovery in Service-Oriented Architecture

    Get PDF
    Privacy can be defined as the right of an individual to have information about them accessed and used in conformity with what they consider acceptable. Privacy preservation in Service-Oriented Architecture (SOA) is an open problem. A solution for this problem must include features that support privacy preservation in each area of SOA. This thesis focuses on the areas of service description and discovery. The problems in these areas are that currently it is not possible to describe how a service provider deals with information received from a service consumer as well as discover a service that satisfies the privacy preferences of a consumer. Research has been carried out in these areas, but there is currently no framework which offers a solution that supports a rich description of privacy policies and their integration in the process of service discovery. Thus, the main goal of this thesis is to propose a privacy preservation framework for the areas of service description and discovery in SOA. The framework enhances service description and discovery with the specification and intersection of privacy policies using a base and domain-specific privacy ontologies. Moreover, the framework enhances these areas with an extension to basic SOA that includes roles responsible for implementing a privacy registry as well as mediating the interactions between service consumers and providers and the privacy preservation component. The framework is evaluated through a health care scenario as privacy preservation is an important issue in this domain

    Bottom-Up Modeling of Permissions to Reuse Residual Clinical Biospecimens and Health Data

    Full text link
    Consent forms serve as evidence of permissions granted by patients for clinical procedures. As the recognized value of biospecimens and health data increases, many clinical consent forms also seek permission from patients or their legally authorized representative to reuse residual clinical biospecimens and health data for secondary purposes, such as research. Such permissions are also granted by the government, which regulates how residual clinical biospecimens may be reused with or without consent. There is a need for increasingly capable information systems to facilitate discovery, access, and responsible reuse of residual clinical biospecimens and health data in accordance with these permissions. Semantic web technologies, especially ontologies, hold great promise as infrastructure for scalable, semantically interoperable approaches in healthcare and research. While there are many published ontologies for the biomedical domain, there is not yet ontological representation of the permissions relevant for reuse of residual clinical biospecimens and health data. The Informed Consent Ontology (ICO), originally designed for representing consent in research procedures, may already contain core classes necessary for representing clinical consent processes. However, formal evaluation is needed to make this determination and to extend the ontology to cover the new domain. This dissertation focuses on identifying the necessary information required for facilitating responsible reuse of residual clinical biospecimens and health data, and evaluating its representation within ICO. The questions guiding these studies include: 1. What is the necessary information regarding permissions for facilitating responsible reuse of residual clinical biospecimens and health data? 2. How well does the Informed Consent Ontology represent the identified information regarding permissions and obligations for reuse of residual clinical biospecimens and health data? We performed three sequential studies to answer these questions. First, we conducted a scoping review to identify regulations and norms that bear authority or give guidance over reuse of residual clinical biospecimens and health data in the US, the permissions by which reuse of residual clinical biospecimens and health data may occur, and key issues that must be considered when interpreting these regulations and norms. Second, we developed and tested an annotation scheme to identify permissions within clinical consent forms. Lastly, we used these findings as source data for bottom-up modelling and evaluation of ICO for representation of this new domain. We found considerable overlap in classes already in ICO and those necessary for representing permissions to reuse residual clinical biospecimens and health data. However, we also identified more than fifty classes that should be added to or imported into ICO. These efforts provide a foundation for comprehensively representing permissions to reuse residual clinical biospecimens and health data. Such representation fills a critical gap for developing applications which safeguard biospecimen resources and enable querying based on their permissions for use. By modeling information about permissions in an ontology, the heterogeneity of these permissions at a range of levels (e.g., federal regulations, consent forms) can be richly represented using entity-relationship links and embedded rules of inference and inheritance. Furthermore, by developing this content in ICO, missing content will be added to the Open Biological and Biomedical Ontology (OBO) Foundry, enabling use alongside other widely adopted ontologies and providing a valuable resource for biospecimen and information management. These methods may also serve as a model for domain experts to interact with ontology development communities to improve ontologies and address gaps which hinder successful uptake.PHDNursingUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162937/1/eliewolf_1.pd
    corecore