17,618 research outputs found

    Concentration inequalities of the cross-validation estimate for stable predictors

    Full text link
    In this article, we derive concentration inequalities for the cross-validation estimate of the generalization error for stable predictors in the context of risk assessment. The notion of stability has been first introduced by \cite{DEWA79} and extended by \cite{KEA95}, \cite{BE01} and \cite{KUNIY02} to characterize class of predictors with infinite VC dimension. In particular, this covers kk-nearest neighbors rules, bayesian algorithm (\cite{KEA95}), boosting,... General loss functions and class of predictors are considered. We use the formalism introduced by \cite{DUD03} to cover a large variety of cross-validation procedures including leave-one-out cross-validation, kk-fold cross-validation, hold-out cross-validation (or split sample), and the leave-υ\upsilon-out cross-validation. In particular, we give a simple rule on how to choose the cross-validation, depending on the stability of the class of predictors. In the special case of uniform stability, an interesting consequence is that the number of elements in the test set is not required to grow to infinity for the consistency of the cross-validation procedure. In this special case, the particular interest of leave-one-out cross-validation is emphasized

    Ranking algorithms for implicit feedback

    No full text
    This report presents novel algorithms to use eye movements as an implicit relevance feedback in order to improve the performance of the searches. The algorithms are evaluated on "Transport Rank Five" Dataset which were previously collected in Task 8.3. We demonstrated that simple linear combination or tensor product of eye movement and image features can improve the retrieval accuracy

    Kernel Mean Shrinkage Estimators

    Get PDF
    A mean function in a reproducing kernel Hilbert space (RKHS), or a kernel mean, is central to kernel methods in that it is used by many classical algorithms such as kernel principal component analysis, and it also forms the core inference step of modern kernel methods that rely on embedding probability distributions in RKHSs. Given a finite sample, an empirical average has been used commonly as a standard estimator of the true kernel mean. Despite a widespread use of this estimator, we show that it can be improved thanks to the well-known Stein phenomenon. We propose a new family of estimators called kernel mean shrinkage estimators (KMSEs), which benefit from both theoretical justifications and good empirical performance. The results demonstrate that the proposed estimators outperform the standard one, especially in a "large d, small n" paradigm.Comment: 41 page
    corecore