49 research outputs found

    Information Extraction from Text for Improving Research on Small Molecules and Histone Modifications

    Get PDF
    The cumulative number of publications, in particular in the life sciences, requires efficient methods for the automated extraction of information and semantic information retrieval. The recognition and identification of information-carrying units in text – concept denominations and named entities – relevant to a certain domain is a fundamental step. The focus of this thesis lies on the recognition of chemical entities and the new biological named entity type histone modifications, which are both important in the field of drug discovery. As the emergence of new research fields as well as the discovery and generation of novel entities goes along with the coinage of new terms, the perpetual adaptation of respective named entity recognition approaches to new domains is an important step for information extraction. Two methodologies have been investigated in this concern: the state-of-the-art machine learning method, Conditional Random Fields (CRF), and an approximate string search method based on dictionaries. Recognition methods that rely on dictionaries are strongly dependent on the availability of entity terminology collections as well as on its quality. In the case of chemical entities the terminology is distributed over more than 7 publicly available data sources. The join of entries and accompanied terminology from selected resources enables the generation of a new dictionary comprising chemical named entities. Combined with the automatic processing of respective terminology – the dictionary curation – the recognition performance reached an F1 measure of 0.54. That is an improvement by 29 % in comparison to the raw dictionary. The highest recall was achieved for the class of TRIVIAL-names with 0.79. The recognition and identification of chemical named entities provides a prerequisite for the extraction of related pharmacological relevant information from literature data. Therefore, lexico-syntactic patterns were defined that support the automated extraction of hypernymic phrases comprising pharmacological function terminology related to chemical compounds. It was shown that 29-50 % of the automatically extracted terms can be proposed for novel functional annotation of chemical entities provided by the reference database DrugBank. Furthermore, they are a basis for building up concept hierarchies and ontologies or for extending existing ones. Successively, the pharmacological function and biological activity concepts obtained from text were included into a novel descriptor for chemical compounds. Its successful application for the prediction of pharmacological function of molecules and the extension of chemical classification schemes, such as the the Anatomical Therapeutic Chemical (ATC), is demonstrated. In contrast to chemical entities, no comprehensive terminology resource has been available for histone modifications. Thus, histone modification concept terminology was primary recognized in text via CRFs with a F1 measure of 0.86. Subsequent, linguistic variants of extracted histone modification terms were mapped to standard representations that were organized into a newly assembled histone modification hierarchy. The mapping was accomplished by a novel developed term mapping approach described in the thesis. The combination of term recognition and term variant resolution builds up a new procedure for the assembly of novel terminology collections. It supports the generation of a term list that is applicable in dictionary-based methods. For the recognition of histone modification in text it could be shown that the named entity recognition method based on dictionaries is superior to the used machine learning approach. In conclusion, the present thesis provides techniques which enable an enhanced utilization of textual data, hence, supporting research in epigenomics and drug discovery

    A Smooth Representation of Belief over SO(3) for Deep Rotation Learning with Uncertainty

    Full text link
    Accurate rotation estimation is at the heart of robot perception tasks such as visual odometry and object pose estimation. Deep neural networks have provided a new way to perform these tasks, and the choice of rotation representation is an important part of network design. In this work, we present a novel symmetric matrix representation of the 3D rotation group, SO(3), with two important properties that make it particularly suitable for learned models: (1) it satisfies a smoothness property that improves convergence and generalization when regressing large rotation targets, and (2) it encodes a symmetric Bingham belief over the space of unit quaternions, permitting the training of uncertainty-aware models. We empirically validate the benefits of our formulation by training deep neural rotation regressors on two data modalities. First, we use synthetic point-cloud data to show that our representation leads to superior predictive accuracy over existing representations for arbitrary rotation targets. Second, we use image data collected onboard ground and aerial vehicles to demonstrate that our representation is amenable to an effective out-of-distribution (OOD) rejection technique that significantly improves the robustness of rotation estimates to unseen environmental effects and corrupted input images, without requiring the use of an explicit likelihood loss, stochastic sampling, or an auxiliary classifier. This capability is key for safety-critical applications where detecting novel inputs can prevent catastrophic failure of learned models.Comment: In Proceedings of Robotics: Science and Systems (RSS'20), Corvallis , Oregon, USA, Jul. 12-16, 202

    Adaptive Feature Extraction Method for Degraded Character Recognition

    Get PDF

    Using linguistic knowledge in SMT

    Get PDF
    Thesis (Ph. D. in Information Technology)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 153-162).In this thesis, we present methods for using linguistically motivated information to enhance the performance of statistical machine translation (SMT). One of the advantages of the statistical approach to machine translation is that it is largely language-agnostic. Machine learning models are used to automatically learn translation patterns from data. SMT can, however, be improved by using linguistic knowledge to address specific areas of the translation process, where translations would be hard to learn fully automatically. We present methods that use linguistic knowledge at various levels to improve statistical machine translation, focusing on Arabic-English translation as a case study. In the first part, morphological information is used to preprocess the Arabic text for Arabic-to-English and English-to-Arabic translation, which reduces the gap in the complexity of the morphology between Arabic and English. The second method addresses the issue of long-distance reordering in translation to account for the difference in the syntax of the two languages. In the third part, we show how additional local context information on the source side is incorporated, which helps reduce lexical ambiguity. Two methods are proposed for using binary decision trees to control the amount of context information introduced. These methods are successfully applied to the use of diacritized Arabic source in Arabic-to-English translation. The final method combines the outputs of an SMT system and a Rule-based MT (RBMT) system, taking advantage of the flexibility of the statistical approach and the rich linguistic knowledge embedded in the rule-based MT system.by Rabih M. Zbib.Ph.D.in Information Technolog

    Metric Learning for Structured Data

    Get PDF
    Paaßen B. Metric Learning for Structured Data. Bielefeld: Universität Bielefeld; 2019.Distance measures form a backbone of machine learning and information retrieval in many application fields such as computer vision, natural language processing, and biology. However, general-purpose distances may fail to capture semantic particularities of a domain, leading to wrong inferences downstream. Motivated by such failures, the field of metric learning has emerged. Metric learning is concerned with learning a distance measure from data which pulls semantically similar data closer together and pushes semantically dissimilar data further apart. Over the past decades, metric learning approaches have yielded state-of-the-art results in many applications. Unfortunately, these successes are mostly limited to vectorial data, while metric learning for structured data remains a challenge. In this thesis, I present a metric learning scheme for a broad class of sequence edit distances which is compatible with any differentiable cost function, and a scalable, interpretable, and effective tree edit distance learning scheme, thus pushing the boundaries of metric learning for structured data. Furthermore, I make learned distances more useful by providing a novel algorithm to perform time series prediction solely based on distances, a novel algorithm to infer a structured datum from edit distances, and a novel algorithm to transfer a learned distance to a new domain using only little data and computation time. Finally, I apply these novel algorithms to two challenging application domains. First, I support students in intelligent tutoring systems. If a student gets stuck before completing a learning task, I predict how capable students would proceed in their situation and guide the student in that direction via edit hints. Second, I use transfer learning to counteract disturbances for bionic hand prostheses to make these prostheses more robust in patients' everyday lives

    Core foundations, algorithms, and language design for symbolic computation in physics

    Get PDF
    This thesis presents three contributions to the field of symbolic computation, followed by their application to symbolic physics computations. The first contribution is to interfacing systems. The Notation package, which is developed in this thesis, allows the entry and the creation of advanced notations in the Mathematica symbolic computation system. In particular, a complete and functioning notation for both Dirac's BraKet notation as well as a full tensorial notation, are given herein. The second part of the thesis introduces a prototype based rule inheritance language paradigm that is applicable to certain advanced pattern matching rewrite rule language models. In particular, an implementation is presented for Mathematica. After detailing this language extension, it is adopted throughout the rest of the thesis. Finally, the third major contribution is a highly efficient algorithm to canonicalize tensorial expressions. By an innovative technique this algorithm avoids the dummy index relabeling problem. Further algorithmic optimizations are then presented. The complete algorithm handles linear symmetries such as the Bianchi identities. It also fully accommodates partial derivatives as well as mixed index classes. These advances in language and notations are extensively demonstrated on problems in quantum mechanics, angular momentum, general relativity, and quasi-spin. It is shown that the developments in this thesis lead to an extremely flexible, extensible, and powerful working environment for the expression and ensuing calculation of symbolic physics computations

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    On cross-domain social semantic learning

    Get PDF
    Approximately 2.4 billion people are now connected to the Internet, generating massive amounts of data through laptops, mobile phones, sensors and other electronic devices or gadgets. Not surprisingly then, ninety percent of the world's digital data was created in the last two years. This massive explosion of data provides tremendous opportunity to study, model and improve conceptual and physical systems from which the data is produced. It also permits scientists to test pre-existing hypotheses in various fields with large scale experimental evidence. Thus, developing computational algorithms that automatically explores this data is the holy grail of the current generation of computer scientists. Making sense of this data algorithmically can be a complex process, specifically due to two reasons. Firstly, the data is generated by different devices, capturing different aspects of information and resides in different web resources/ platforms on the Internet. Therefore, even if two pieces of data bear singular conceptual similarity, their generation, format and domain of existence on the web can make them seem considerably dissimilar. Secondly, since humans are social creatures, the data often possesses inherent but murky correlations, primarily caused by the causal nature of direct or indirect social interactions. This drastically alters what algorithms must now achieve, necessitating intelligent comprehension of the underlying social nature and semantic contexts within the disparate domain data and a quantifiable way of transferring knowledge gained from one domain to another. Finally, the data is often encountered as a stream and not as static pages on the Internet. Therefore, we must learn, and re-learn as the stream propagates. The main objective of this dissertation is to develop learning algorithms that can identify specific patterns in one domain of data which can consequently augment predictive performance in another domain. The research explores existence of specific data domains which can function in synergy with another and more importantly, proposes models to quantify the synergetic information transfer among such domains. We include large-scale data from various domains in our study: social media data from Twitter, multimedia video data from YouTube, video search query data from Bing Videos, Natural Language search queries from the web, Internet resources in form of web logs (blogs) and spatio-temporal social trends from Twitter. Our work presents a series of solutions to address the key challenges in cross-domain learning, particularly in the field of social and semantic data. We propose the concept of bridging media from disparate sources by building a common latent topic space, which represents one of the first attempts toward answering sociological problems using cross-domain (social) media. This allows information transfer between social and non-social domains, fostering real-time socially relevant applications. We also engineer a concept network from the semantic web, called semNet, that can assist in identifying concept relations and modeling information granularity for robust natural language search. Further, by studying spatio-temporal patterns in this data, we can discover categorical concepts that stimulate collective attention within user groups.Includes bibliographical references (pages 210-214)
    corecore