4,235 research outputs found

    Blind source separation using temporal predictability

    Get PDF
    A measure of temporal predictability is defined and used to separate linear mixtures of signals. Given any set of statistically independent source signals, it is conjectured here that a linear mixture of those signals has the following property: the temporal predictability of any signal mixture is less than (or equal to) that of any of its component source signals. It is shown that this property can be used to recover source signals from a set of linear mixtures of those signals by finding an un-mixing matrix that maximizes a measure of temporal predictability for each recovered signal. This matrix is obtained as the solution to a generalized eigenvalue problem; such problems have scaling characteristics of O (N3), where N is the number of signal mixtures. In contrast to independent component analysis, the temporal predictability method requires minimal assumptions regarding the probability density functions of source signals. It is demonstrated that the method can separate signal mixtures in which each mixture is a linear combination of source signals with supergaussian, sub-gaussian, and gaussian probability density functions and on mixtures of voices and music

    An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation

    Get PDF
    We present and test an extension of slow feature analysis as a novel approach to nonlinear blind source separation. The algorithm relies on temporal correlations and iteratively reconstructs a set of statistically independent sources from arbitrary nonlinear instantaneous mixtures. Simulations show that it is able to invert a complicated nonlinear mixture of two audio signals with a reliability of more than 9090\%. The algorithm is based on a mathematical analysis of slow feature analysis for the case of input data that are generated from statistically independent sources

    Spectrum Sensing Framework based on Blind Source Separation for Cognitive Radio Environments

    Get PDF
    El uso eficiente del espectro se ha convertido en un área de investigación activa, debido a la escasez de este recurso y a su subutilización. En un escenario en el que el espectro es un recurso compartido como en la radio cognitiva (CR), los espacios sin uso dentro de las bandas de frecuencias con licencia podrían ser detectados y posteriormente utilizados por un usuario secundario a través de técnicas de detección y sensado del espectro. Generalmente, estas técnicas de detección se utilizan a partir de un conocimiento previo de las características de canal. En el presente trabajo se propone un enfoque de detección ciega del espectro basado en análisis de componentes independientes (ICA) y análisis de espectro singular (SSA). La técnica de detección se valida a través de simulación, y su desempeño se compara con metodologías propuestas por otros autores en la literatura. Los resultados muestran que el sistema propuesto es capaz de detectar la mayoría de las fuentes con bajo consumo de tiempo, un aspecto que cabe resaltar para aplicaciones en línea con exigencias de tiempo.The efficient use of spectrum has become an active research area, due to its scarcity and underutilization. In a spectrum sharing scenario as Cognitive Radio (CR), the vacancy of licensed frequency bands could be detected by a secondary user through spectrum sensing techniques. Usually, this sensing approaches are performed with a priori knowledge of the channel features. In the present work, a blind spectrum sensing approach based on Independent Component Analysis and Singular Spectrum Analysis is proposed. The approach is tested and compared with other outcomes. Results show that the proposed scheme is capable of detect most of the sources with low time consumption, which is a remarkable aspect for online applications with demanding time issues

    Understanding Slow Feature Analysis: A Mathematical Framework

    Get PDF
    Slow feature analysis is an algorithm for unsupervised learning of invariant representations from data with temporal correlations. Here, we present a mathematical analysis of slow feature analysis for the case where the input-output functions are not restricted in complexity. We show that the optimal functions obey a partial differential eigenvalue problem of a type that is common in theoretical physics. This analogy allows the transfer of mathematical techniques and intuitions from physics to concrete applications of slow feature analysis, thereby providing the means for analytical predictions and a better understanding of simulation results. We put particular emphasis on the situation where the input data are generated from a set of statistically independent sources.\ud The dependence of the optimal functions on the sources is calculated analytically for the cases where the sources have Gaussian or uniform distribution

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page
    corecore