20,176 research outputs found

    Piecewise linear regularized solution paths

    Full text link
    We consider the generic regularized optimization problem β^(λ)=argminβL(y,Xβ)+λJ(β)\hat{\mathsf{\beta}}(\lambda)=\arg \min_{\beta}L({\sf{y}},X{\sf{\beta}})+\lambda J({\sf{\beta}}). Efron, Hastie, Johnstone and Tibshirani [Ann. Statist. 32 (2004) 407--499] have shown that for the LASSO--that is, if LL is squared error loss and J(β)=β1J(\beta)=\|\beta\|_1 is the 1\ell_1 norm of β\beta--the optimal coefficient path is piecewise linear, that is, β^(λ)/λ\partial \hat{\beta}(\lambda)/\partial \lambda is piecewise constant. We derive a general characterization of the properties of (loss LL, penalty JJ) pairs which give piecewise linear coefficient paths. Such pairs allow for efficient generation of the full regularized coefficient paths. We investigate the nature of efficient path following algorithms which arise. We use our results to suggest robust versions of the LASSO for regression and classification, and to develop new, efficient algorithms for existing problems in the literature, including Mammen and van de Geer's locally adaptive regression splines.Comment: Published at http://dx.doi.org/10.1214/009053606000001370 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Learning to Approximate a Bregman Divergence

    Full text link
    Bregman divergences generalize measures such as the squared Euclidean distance and the KL divergence, and arise throughout many areas of machine learning. In this paper, we focus on the problem of approximating an arbitrary Bregman divergence from supervision, and we provide a well-principled approach to analyzing such approximations. We develop a formulation and algorithm for learning arbitrary Bregman divergences based on approximating their underlying convex generating function via a piecewise linear function. We provide theoretical approximation bounds using our parameterization and show that the generalization error Op(m1/2)O_p(m^{-1/2}) for metric learning using our framework matches the known generalization error in the strictly less general Mahalanobis metric learning setting. We further demonstrate empirically that our method performs well in comparison to existing metric learning methods, particularly for clustering and ranking problems.Comment: 19 pages, 4 figure
    corecore