8,001 research outputs found

    Explaining Trained Neural Networks with Semantic Web Technologies: First Steps

    Get PDF
    The ever increasing prevalence of publicly available structured data on the World Wide Web enables new applications in a variety of domains. In this paper, we provide a conceptual approach that leverages such data in order to explain the input-output behavior of trained artificial neural networks. We apply existing Semantic Web technologies in order to provide an experimental proof of concept

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations

    Metadata and ontologies for organizing students’ memories and learning: standards and convergence models for context awareness

    Get PDF
    Este artículo trata de las ontologías que sirven para la comprensión en contexto y la Gestión de la Información Personal (PIM)y su aplicabilidad al proyecto Memex Metadata(M2). M2 es un proyecto de investigación de la Universidad de Carolina del Norte en Chapel Hill para mejorar la memoria digital de los alumnos utilizando tablet PC, la tecnología SenseCam de Microsoft y otras tecnologías móviles(p.ej. un dispositivo de GPS) para capturar el contexto del aprendizaje. Este artículo presenta el proyecto M2, dicute el concepto de los portafolios digitales en las actuales tendencias educativas, relacionándolos con las tecnologías emergentes, revisa las ontologías relevantes y su relación con el proyecto CAF (Context Awareness Framework), y concluye identificando las líneas de investigación futuras.This paper focuses on ontologies supporting context awareness and Personal Information Management (PIM) and their applicability in Memex Metadata (M2) project. M2 is a research project of the University of North Carolina at Chapel Hill to improve student digital memories using the tablet PC, Microsoft’s SenseCam technology, and other mobile technologies (e.g., a GPS device) to capture context. The M2 project offers new opportunities studying students’ learning with digital technologies. This paper introduces the M2 project; discusses E-portfolios and current educational trends related to pervasive computing; reviews relevant ontologies and their relationship to the projects’ CAF (context awareness framework), and concludes by identifying future research directions

    Metadata for describing learning scenarios under European Higher Education Area paradigm

    Get PDF
    In this paper we identify the requirements for creating formal descriptions of learning scenarios designed under the European Higher Education Area paradigm, using competences and learning activities as the basic pieces of the learning process, instead of contents and learning resources, pursuing personalization. Classical arrangements of content based courses are no longer enough to describe all the richness of this new learning process, where user profiles, competences and complex hierarchical itineraries need to be properly combined. We study the intersection with the current IMS Learning Design specification and the additional metadata required for describing such learning scenarios. This new approach involves the use of case based learning and collaborative learning in order to acquire and develop competences, following adaptive learning paths in two structured levels

    An IMS-Learning Design Editor for a Higher Education Blended Learning Scenario

    Get PDF
    The IMS-Learning Design has been developed to support the creation of reusable and pedagogically neutral learning scenarios and content. Although it is especially suitable for eLearning, there is a lot of interest on using it in higher education blended learning scenarios. However there are some related key issues which must be managed such as cultural bias and the need for expensive human resources to design and develop specification compliant units of learning. They can be addressed by the design of ad-hoc editors supporting concrete learning design units of learning. We suggest some solutions to overcome these limitations, based on our experience designing the user interface of an IMS-LD compliant editor, GDUS+. We also explain our user centering approach, and give some conclusions about the benefits of using IMS-LD

    A Hybrid Recommender Strategy on an Expanded Content Manager in Formal Learning

    Get PDF
    The main topic of this paper is to find ways to improve learning in a formal Higher Education Area. In this environment, the teacher publishes or suggests contents that support learners in a given course, as supplement of classroom training. Generally, these materials are pre-stored and not changeable. These contents are typically published in learning management systems (the Moodle platform emerges as one of the main choices) or in sites created and maintained on the web by teachers themselves. These scenarios typically include a specific group of students (class) and a given period of time (semester or school year). Contents reutilization often needs replication and its update requires new edition and new submission by teachers. Normally, these systems do not allow learners to add new materials, or to edit existing ones. The paper presents our motivations, and some related concepts and works. We describe the concepts of sequencing and navigation in adaptive learning systems, followed by a short presentation of some of these systems. We then discuss the effects of social interaction on the learners’ choices. Finally, we refer some more related recommender systems and their applicability in supporting learning. One central idea from our proposal is that we believe that students with the same goals and with similar formal study time can benefit from contents' assessments made by learners that already have completed the same courses and have studied the same contents. We present a model for personalized recommendation of learning activities to learners in a formal learning context that considers two systems. In the extended content management system, learners can add new materials, select materials from teachers and from other learners, evaluate and define the time spent studying them. Based on learner profiles and a hybrid recommendation strategy, combining conditional and collaborative filtering, our second system will predict learning activities scores and offers adaptive and suitable sequencing learning contents to learners. We propose that similarities between learners can be based on their evaluation interests and their recent learning history. The recommender support subsystem aims to assist learners at each step suggesting one suitable ordered list of LOs, by decreasing order of relevance. The proposed model has been implemented in the Moodle Learning Management System (LMS), and we present the system’s architecture and design. We will evaluate it in a real higher education formal course and we intend to present experimental results in the near future

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, Kühme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)
    • …
    corecore