12,316 research outputs found

    The sustainability of communicative packaging concepts in the food supply chain. A case study: part 1. Life cycle assessment

    Get PDF
    Purpose In recent years, a new perspective for food packaging has emerged as a result of several issues like quality, safety, competitive prices or providing of useful information to consumers. This new perspective is called communicative packaging. Communicative packaging may influence consumers/companies on purchasing decisions. Since the environmental evaluation of such systems has not yet been performed, this paper is focused on the environmental evaluation of a flexible best-before-date (FBBD) communicative device on a packaging consumer unit and its implications on reducing environmental impacts related to fresh products. This consumer unit consists of a nanoclay-based polylactic acid tray filled with pork chops. Methods The environmental assessment of the consumer unit was made through life cycle assessment (LCA) using a cradle-to-gate approach. Environmental impacts were assessed according to the Eco-Indicator 99 v 2.1 methodology in Individualist (I) perspective. Results and discussion Several results were obtained from the LCA. With regard to environmental impacts of the FBBD, most of them were due to the paper substrate used for the manufacture of this communicative packaging concept as well as to the transports for delivering the components of the FBBD communicative device. On the other hand, when environmental impacts of packaging system with and without FBBD were compared, a large environmental load was detected for the system that has the communicative device affixed as a result of the higher weight of the package. However, the environmental load caused by the use of the FBBD was minimal in comparison with the total environmental load of the whole packaging system. On the contrary, the consumer unit that has the communicative device affixed showed less environmental burden than the consumer unit that has not affixed the device. This was due to the environmental benefits that the communicative device provides by reducing the amount of out-of-date packaged products at retailer outlets. Conclusions The use of a FBBD contributes to minimize environmental burdens related to the production, packaging and delivery of pork chops since it facilitates a dynamic control of out-of-date products even though the consumer unit with FBBD weighs 1 g more than the consumer unit that does not use the communicative device. Recommendations The results presented in this paper are estimated results of a specific case study for a prototype of communicative packaging device. Consequently, these results must be considered as a first approach according to future developments on communicative packaging

    Special issue: Recent advances on Building Information Modeling (BIM)

    Get PDF

    Towards Multidimensional Verification: Where Functional Meets Non-Functional

    Full text link
    Trends in advanced electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends towards the multidimensional verification concept. The concept is motivated by an example for the functional and power verification dimensions.Comment: 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: Current and upcoming applications

    Get PDF
    This review paper intends to gather and organize a series of works which discuss the possibility of exploiting the mechanical properties of distributed arrays of piezoelectric transducers. The concept can be described as follows: on every structural member one can uniformly distribute an array of piezoelectric transducers whose electric terminals are to be connected to a suitably optimized electric waveguide. If the aim of such a modification is identified to be the suppression of mechanical vibrations then the optimal electric waveguide is identified to be the 'electric analog' of the considered structural member. The obtained electromechanical systems were called PEM (PiezoElectroMechanical) structures. The authors especially focus on the role played by Lagrange methods in the design of these analog circuits and in the study of PEM structures and we suggest some possible research developments in the conception of new devices, in their study and in their technological application. Other potential uses of PEMs, such as Structural Health Monitoring and Energy Harvesting, are described as well. PEM structures can be regarded as a particular kind of smart materials, i.e. materials especially designed and engineered to show a specific andwell-defined response to external excitations: for this reason, the authors try to find connection between PEM beams and plates and some micromorphic materials whose properties as carriers of waves have been studied recently. Finally, this paper aims to establish some links among some concepts which are used in different cultural groups, as smart structure, metamaterial and functional structural modifications, showing how appropriate would be to avoid the use of different names for similar concepts. © 2015 - IOS Press and the authors

    DeepPR: Progressive Recovery for Interdependent VNFs with Deep Reinforcement Learning

    Get PDF
    The increasing reliance upon cloud services entails more flexible networks that are realized by virtualized network equipment and functions. When such advanced network systems face a massive failure by natural disasters or attacks, the recovery of the entire system may be conducted in a progressive way due to limited repair resources. The prioritization of network equipment in the recovery phase influences the interim computation and communication capability of systems, since the systems are operated under partial functionality. Hence, finding the best recovery order is a critical problem, which is further complicated by virtualization due to dependency among network nodes and layers. This paper deals with a progressive recovery problem under limited resources in networks with VNFs, where some dependent network layers exist. We prove the NP-hardness of the progressive recovery problem and approach the optimum solution by introducing DeepPR, a progressive recovery technique based on Deep Reinforcement Learning (Deep RL). Our simulation results indicate that DeepPR can achieve the near-optimal solutions in certain networks and is more robust to adversarial failures, compared to a baseline heuristic algorithm.Comment: Technical Report, 12 page

    Cost-aware design and simulation of electrical energy systems

    Get PDF
    One fundamental dimension in the design of an electrical energy system (EES) is the economic analysis of the possible design alternatives, in order to ensure not just the maximization of the energy output but also the return on the investment and the possible profits. Since the energy output and the economic figures of merit are intertwined, for an accurate analysis it is necessary to analyze these two aspects of the problem concurrently, in order to define effective energy management policies. This paper achieves that objective by tracking and measuring the energy efficiency and the cost effectiveness in a single modular framework. The two aspects are modeled separately, through the definition of dedicated simulation layers governed by dedicated virtual buses that elaborate and manage the information and energy flows. Both layers are simulated concurrently within the same simulation infrastructure based on SystemC-AMS, so as to recreate at runtime the mutual influence of the two aspects, while allowing the use of different discrete time scales for the two layers. Thanks to the tight coupling provided by the single simulation engine, our method enables a quick estimation of various cost metrics (net costs, annualized costs, and profits) of any configuration of EES under design, via an informed exploration of the alternatives. To prove the effectiveness of this approach, we apply the proposed strategy to two EES case studies, we explored various management strategies and the presence of different types and numbers of power sources and energy storage devices in the EES. The analysis proved to allow the identification of the optimal profitable solutions, thereby improving the standard design and simulation flow of EES
    • …
    corecore