1,104 research outputs found

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    A Reference Software Architecture for Social Robots

    Full text link
    Social Robotics poses tough challenges to software designers who are required to take care of difficult architectural drivers like acceptability, trust of robots as well as to guarantee that robots establish a personalised interaction with their users. Moreover, in this context recurrent software design issues such as ensuring interoperability, improving reusability and customizability of software components also arise. Designing and implementing social robotic software architectures is a time-intensive activity requiring multi-disciplinary expertise: this makes difficult to rapidly develop, customise, and personalise robotic solutions. These challenges may be mitigated at design time by choosing certain architectural styles, implementing specific architectural patterns and using particular technologies. Leveraging on our experience in the MARIO project, in this paper we propose a series of principles that social robots may benefit from. These principles lay also the foundations for the design of a reference software architecture for Social Robots. The ultimate goal of this work is to establish a common ground based on a reference software architecture to allow to easily reuse robotic software components in order to rapidly develop, implement, and personalise Social Robots

    Developing an Autonomous Mobile Robotic Device for Monitoring and Assisting Older People

    Get PDF
    A progressive increase of the elderly population in the world has required technological solutions capable of improving the life prospects of people suffering from senile dementias such as Alzheimer's. Socially Assistive Robotics (SAR) in the research field of elderly care is a solution that can ensure, through observation and monitoring of behaviors, their safety and improve their physical and cognitive health. A social robot can autonomously and tirelessly monitor a person daily by providing assistive tasks such as remembering to take medication and suggesting activities to keep the assisted active both physically and cognitively. However, many projects in this area have not considered the preferences, needs, personality, and cognitive profiles of older people. Moreover, other projects have developed specific robotic applications making it difficult to reuse and adapt them on other hardware devices and for other different functional contexts. This thesis presents the development of a scalable, modular, multi-tenant robotic application and its testing in real-world environments. This work is part of the UPA4SAR project ``User-centered Profiling and Adaptation for Socially Assistive Robotics''. The UPA4SAR project aimed to develop a low-cost robotic application for faster deployment among the elderly population. The architecture of the proposed robotic system is modular, robust, and scalable due to the development of functionality in microservices with event-based communication. To improve robot acceptance the functionalities, enjoyed through microservices, adapt the robot's behaviors based on the preferences and personality of the assisted person. A key part of the assistance is the monitoring of activities that are recognized through deep neural network models proposed in this work. The final experimentation of the project carried out in the homes of elderly volunteers was performed with complete autonomy of the robotic system. Daily care plans customized to the person's needs and preferences were executed. These included notification tasks to remember when to take medication, tasks to check if basic nutrition activities were accomplished, entertainment and companionship tasks with games, videos, music for cognitive and physical stimulation of the patient

    BlueSky: Combining Task Planning and Activity-Centric Access Control for Assistive Humanoid Robots

    Get PDF
    In the not too distant future, assistive humanoid robots will provide versatile assistance for coping with everyday life. In their interactions with humans, not only safety, but also security and privacy issues need to be considered. In this Blue Sky paper, we therefore argue that it is time to bring task planning and execution as a well-established field of robotics with access and usage control in the field of security and privacy closer together. In particular, the recently proposed activity-based view on access and usage control provides a promising approach to bridge the gap between these two perspectives. We argue that humanoid robots provide for specific challenges due to their task-universality and their use in both, private and public spaces. Furthermore, they are socially connected to various parties and require policy creation at runtime due to learning. We contribute first attempts on the architecture and enforcement layer as well as on joint modeling, and discuss challenges and a research roadmap also for the policy and objectives layer. We conclude that the underlying combination of decentralized systems\u27 and smart environments\u27 research aspects provides for a rich source of challenges that need to be addressed on the road to deployment

    Affective Communication for Socially Assistive Robots (SARs) for Children with Autism Spectrum Disorder: A Systematic Review

    Get PDF
    Research on affective communication for socially assistive robots has been conducted to enable physical robots to perceive, express, and respond emotionally. However, the use of affective computing in social robots has been limited, especially when social robots are designed for children, and especially those with autism spectrum disorder (ASD). Social robots are based on cognitiveaffective models, which allow them to communicate with people following social behaviors and rules. However, interactions between a child and a robot may change or be different compared to those with an adult or when the child has an emotional deficit. In this study, we systematically reviewed studies related to computational models of emotions for children with ASD. We used the Scopus, WoS, Springer, and IEEE-Xplore databases to answer different research questions related to the definition, interaction, and design of computational models supported by theoretical psychology approaches from 1997 to 2021. Our review found 46 articles; not all the studies considered children or those with ASD.This research was funded by VRIEA-PUCV, grant number 039.358/202

    Architecture de contrÎle d'un robot de téléprésence et d'assistance aux soins à domicile

    Get PDF
    La population vieillissante provoque une croissance des coĂ»ts pour les soins hospitaliers. Pour Ă©viter que ces coĂ»ts deviennent trop importants, des robots de tĂ©lĂ©prĂ©sence et d’assistance aux soins et aux activitĂ©s quotidiennes sont envisageables afin de maintenir l’autonomie des personnes ĂągĂ©es Ă  leur domicile. Cependant, les robots actuels possĂšdent individuellement des fonctionnalitĂ©s intĂ©ressantes, mais il serait bĂ©nĂ©fique de pouvoir rĂ©unir leurs capacitĂ©s. Une telle intĂ©gration est possible par l’utilisation d’une architecture dĂ©cisionnelle permettant de jumeler des capacitĂ©s de navigation, de suivi de la voix et d’acquisition d’informations afin d’assister l’opĂ©rateur Ă  distance, voir mĂȘme s’y substituer. Pour ce projet, l’architecture de contrĂŽle HBBA (Hybrid Behavior-Based Architecture) sert de pilier pour unifier les bibliothĂšques requises, RTAB-Map (Real-Time Appearance-Based Mapping) et ODAS (Open embeddeD Audition System), pour rĂ©aliser cette intĂ©gration. RTAB-Map est une bibliothĂšque permettant la localisation et la cartographie simultanĂ©e selon diffĂ©rentes configurations de capteurs tout en respectant les contraintes de traitement en ligne. ODAS est une bibliothĂšque permettant la localisation, le suivi et la sĂ©paration de sources sonores en milieux rĂ©els. Les objectifs sont d’évaluer ces capacitĂ©s en environnement rĂ©el en dĂ©ployant la plateforme robotique dans diffĂ©rents domiciles, et d’évaluer le potentiel d’une telle intĂ©gration en rĂ©alisant un scĂ©nario autonome d’assistance Ă  la prise de mesure de signes vitaux. La plateforme robotique Beam+ est utilisĂ©e pour rĂ©aliser cette intĂ©gration. La plateforme est bonifiĂ©e par l’ajout d’une camĂ©ra RBG-D, d’une matrice de huit microphones, d’un ordinateur et de batteries supplĂ©mentaires. L’implĂ©mentation rĂ©sultante, nommĂ©e SAM, a Ă©tĂ© Ă©valuĂ©e dans 10 domiciles pour caractĂ©riser la navigation et le suivi de conversation. Les rĂ©sultats de la navigation suggĂšrent que les capacitĂ©s de navigation fonctionnent selon certaines contraintes propres au positionement des capteurs et des conditions environnementales, impliquant la nĂ©cessitĂ© d’intervention de l’opĂ©rateur pour compenser. La modalitĂ© de suivi de la voix fonctionne bien dans des environnements calmes, mais des amĂ©liorations sont requises en milieu bruyant. Incidemment, la rĂ©alisation d’un scĂ©nario d’assistance complĂštement autonome est fonction des performances de la combinaison de ces fonctionnalitĂ©s, ce qui rend difficile d’envisager le retrait complet d’un opĂ©rateur dans la boucle de dĂ©cision. L’intĂ©gration des modalitĂ©s avec HBBA s’avĂšre possible et concluante, et ouvre la porte Ă  la rĂ©utilisabilitĂ© de l’implĂ©mentation sur d’autres plateformes robotiques qui pourraient venir compenser face aux lacunes observĂ©es sur la mise en Ɠuvre avec la plateforme Beam+

    Human-Machine Interfaces for Service Robotics

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    MotorSkins—a bio-inspired design approach towards an interactive soft-robotic exosuit

    Get PDF
    The work presents a bio-inspired design approach to a soft-robotic solution for assisting the knee-bending in users with reduced mobility in lower limbs. Exosuits and fluid-driven actuators are fabric-based devices that are gaining increasing relevance as alternatives assistive technologies that can provide simpler, more flexible solutions in comparison with the rigid exoskeletons. These devices, however, commonly require an external energy supply or a pressurized-fluid reservoir, which considerably constrain the autonomy of such solutions. In this work, we introduce an event-based energy cycle (EBEC) design concept, that can harvest, store, and release the required energy for assisting the knee-bending, in a synchronised interaction with the user and the environment, thus eliminating any need for external energy or control input. Ice-plant hydro-actuation system served as the source of inspiration to address the specific requirements of such interactive exosuit through a fluid-driven material system. Based on the EBEC design concepts and the abstracted bio-inspired principles, a series of (material and process driven) design experimentations helped to address the challenges of realising various functionalities of the harvest, storage, actuation and control instances within a closed hydraulic circuit. Sealing and defining various areas of water-tight seam made out of thermoplastic elastomers provided the base material system to program various chambers, channels, flow-check valves etc of such EBEC system. The resulting fluid-driven EBEC-skin served as a proof of concept for such active exosuit, that brings these functionalities into an integrated ‘sense-acting’ material system, realising an auto-synchronised energy and information cycles. The proposed design concept can serve as a model for development of similar fluid-driven EBEC soft-machines for further applications. On the more general scheme, the work presents an interdisciplinary design-science approach to bio-inspiration and showcases how biological material solutions can be looked at from a design/designer perspective to bridge the bottom–up and top–down approach to bio-inspiration.Deutsche Forschungsgemeinschafthttps://doi.org/10.13039/501100001659Peer Reviewe
    • 

    corecore