7,461 research outputs found

    From 5G to 6G: Revolutionizing Satellite Networks through TRANTOR Foundation

    Full text link
    5G technology will drastically change the way satellite internet providers deliver services by offering higher data speeds, massive network capacity, reduced latency, improved reliability and increased availability. A standardised 5G ecosystem will enable adapting 5G to satellite needs. The EU-funded TRANTOR project will seek to develop novel and secure satellite network management solutions that allow scaling up heterogeneous satellite traffic demands and capacities in a cost-effective and highly dynamic way. Researchers also target the development of flexible 6G non-terrestrial access architectures. The focus will be on the design of a multi-orbit and multi-band antenna for satellite user equipment (UE), as well as the development of gNodeB (gNB) and UE 5G non-terrestrial network equipment to support multi-connectivity

    Uncertainty and the Value of Information in Hinterland Transport Planning

    Get PDF

    Optimizing key parameters of ground delay program with uncertain airport capacity

    Get PDF
    The Ground Delay Program (GDP) relies heavily on the capacity of the subject airport, which, due to its uncertainty, adds to the difficulty and suboptimality of GDP operation. This paper proposes a framework for the joint optimization of GDP key parameters including file time, end time, and distance. These parameters are articulated and incorporated in a GDP model, based on which an optimization problem is proposed and solved under uncertain airport capacity. Unlike existing literature, this paper explicitly calculates the optimal GDP file time, which could significantly reduce the delay times as shown in our numerical study. We also propose a joint GDP end-time-and-distance model solved with genetic algorithm. The optimization problem takes into account the GDP operational efficiency, airline and flight equity, and Air Traffic Control (ATC) risks. A simulation study with real-world data is undertaken to demonstrate the advantage of the proposed framework. It is shown that, in comparison with the current GDP in operation, the proposed solution reduces the total delay time, unnecessary ground delay, and unnecessary ground delay flights by 14.7%, 50.8%, and 48.3%, respectively. The proposed GDP strategy has the potential to effectively reduce the overall delay while maintaining the ATC safety risk within an acceptable level

    Governance of a complex system: water

    Get PDF
    This paper sets out a complex adaptive systems view of water governance. Overview Fresh water is a life - enabling resource as well as the source of spiritual, social and economic wellbeing and development. It is continuously renewed by the Earth’s natural recycling systems using heat from the sun to evaporate and purify, and then rain to replenish supplies. For thousands of years people have benefited from these systems with little concern for their ability to keep up with human population and economic development. Rapid increases in population and economic activity have brought concern for how these systems interact with human social and economic systems to centre stage this century in the guise of a focus on water governance. What do we mean by governance and how might we better understand our water governance systems to ensure their ongoing sustainability? This paper sets out a complex adaptive systems view of water governance. It draws on the academic literature on effective governance of complex systems and effective water governance to identify some principles for use in water governance in New Zealand. It illustrates aspects of emerging water governance practice with some examples from New Zealand which have employed a multi-actor, collaborative governance approach. The paper concludes with some implications for the future evolution of effective water governance in New Zealand. Collaborative governance processes are relatively unfamiliar to New Zealand citizens, politicians and other policy actors which makes it more important that we study and learn from early examples of the use of this mode of governance

    Modeling water resources management at the basin level: review and future directions

    Get PDF
    Water quality / Water resources development / Agricultural production / River basin development / Mathematical models / Simulation models / Water allocation / Policy / Economic aspects / Hydrology / Reservoir operation / Groundwater management / Drainage / Conjunctive use / Surface water / GIS / Decision support systems / Optimization methods / Water supply

    Arctic Security Strategies and the North Atlantic States

    Get PDF
    publishedVersio

    Contested Visions for Transformation : The Visions of the Green New Deal and the Politics of Technology Assessment, Responsible Research and Innovation, and Sustainability Research

    Get PDF
    Societal transformations are contested. The goals and visions of transformations, as well as the means and strategies to achieve them, are born in political conflict and power constellations. Which transformations are seen as desirable and possible by democratic majorities changes throughout history. This is the political reality where research for transformations finds itself. Technology assessment (TA), responsible research and innovation (RRI), and sustainability research (SR) are a part of such contestations. They engage in envisioning, debating, analyzing, and evaluating different visions of and options for the future. In this article we turn to visions of the future as a key aspect of societal contestation and the shaping of interfaces between research for transformations and society. Based on the approach of vision assessment developed in TA, we situate TA, RRI, and SR within visions of research and social order. We argue that in these politicized times it is increasingly necessary to understand how research relates to larger visions of society and the contested nature of transformations. We turn to one of the major contemporary visions for societal transformation: The Green New Deal (GND). This vision imagines a large-scale transformation of society and the economy towards sustainability and justice and is currently debated in major political institutions and social movements. It presents an ongoing case of the “making of the future”, which is highly relevant for TA, RRI, and SR. We show how this vision is creating new knowledge and social arrangements and how it is opening up new possibilities for transformational research. The article discusses the implications that a possible further impact of GND visions in politics may have for TA, RRI, and SR, and, relatedly, how expertise and insights from TA, RRI, and SR could significantly add to the GND debate

    Planning of outsourced operations in pharmaceutical supply chains

    Get PDF
    In this dissertation, we focus on the planning and control of supply chains where part of the supply chain is outsourced to a contract manufacturer(s). Supply Chain Management deals with the integration of business processes from end-customers through original suppliers that provide products, services and information that add value for customers (Cooper et al., 1997). In a narrow sense, a supply chain can be ‘owned’ by one large company with several sites, often located in different countries. Planning and coordinating the materials and information flows within such a worldwide operating company can be a challenging task. However, the decision making is easier than in case more companies are involved in a supply chain, since the sites are part of one organization with one board and it is likely that the decision makers have full access to information needed for the supply chain planning. Outsourcing is an ‘act of moving some of a firm’s internal activities and decision responsibilities to outside providers’ (Chase et al., 2004) and it has been studied extensively in the literature.Outsourcing is developing in many industries, but in this dissertation, we focus on outsourcing in the pharmaceutical industry, where outsourced supply chain structures are rapidly developing. Recent studies show that the global pharmaceutical outsourcing market has doubled from 2001 to 2007 and it is expected to further increase in the upcoming years. In the pharmaceutical industry, the outsourcing relationship is typically long-term and customers often require high service levels. Due to high setup costs, production is conducted in fixed large batch sizes and campaign sizes. The cumulative lead time within the supply chain is more than one year, whereas the customer lead time is about two months. In this industry, production activities are outsourced for three main reasons. First, intellectual property legislation requires outsourcing the production activities to a contract manufacturer that owns the patent for specific technologies that are needed to perform the production activities. Second, expensive technologies or tight (internal) capacity restrictions also result in outsourcing. Third, to limit the supply uncertainty, companies outsource to have an external source producing the same product next to an internal source. This dissertation deals with the planning and control of outsourced supply chains, which are supply chains where part of the supply chain is outsourced to a contract manufacturer. Most supply chain operations planning models from the literature assume that the supply chain is planned at some level of aggregation and that further coordination is conducted at a more detailed level by lower planning levels. These concepts implicitly assume that the lower planning level and the operations are conducted within the same company with full information availability and full control over the operations, which is not case when part of the supply chain is outsourced. Hence, the objective of this dissertation is to obtain insights into the implications of outsourcing on the supply chain planning models. First, we review the literature on outsourcing research and we find that little is known on the operational planning decisions in an outsourced supply chain and on the implications of outsourcing on the operations planning. The literature on outsourcing at the operational level uses outsourcing purely as a secondary source to control performances such as the delivery reliability. Consequently, we discuss two case studies that we conducted into outsourced supply chains to understand the implications of outsourcing on the supply chain operations planning function, where the contract manufacturer is the only source of supply. The main implications of the planning and control of outsourced supply chains can be summarized in three categories: limited information transparency, limited control over the detailed planning and priorities at the contract manufacturer, and contractual obligations. Below, we discuss these in more detail. In order to decide on the release of materials and resources in a supply chain, it is required that the decision maker is able to frequently monitor the status of the supply chain. In an outsourced supply chain, the outsourcer does not have access to all relevant information of the entire supply chain, especially not to the available capacity in each period, also because the contract manufacturer serves a number of different (and sometimes even competing) outsourcers on the same production line. Moreover, the contract manufacturer plans and controls its part of the supply chain based on rules and priorities that are unknown to the outsourcer. This results in facing an uncertain capacity allocation by the outsourcer. Another implication is that the contract manufacturer requires by contract to reserve capacity slots prior to ordering. These reservations are subject to an acceptation decision, which means that part of the reservation quantity can be rejected. The accepted reservation quantity bounds the order quantity that follows later on. Therefore, another main insight from the case study is that in an outsourcing relationship, the order process consists of different (hierarchically connected) decisions in time. In the ordering process, the uncertain capacity allocation of the contract manufacturer should be incorporated. Hence, the order release mechanism requires a richer and more developed communication and ordering pattern than commonly assumed in practice. In a subsequent study, we build on this insight and we design three different order release mechanisms to investigate to what extent a more complicated order release function improves (or deteriorates) the performance of the supply chain operations planning models. The order release mechanisms differ in the number of decision levels and they incorporate the probabilistic behaviour of the contract manufacturer. Based on a simulation study, we show that a more advanced order release strategy that captures the characteristics of outsourcing performs significantly better than a simple order release strategy that is commonly used in practice. We also discuss the conditions for a successful implementation of the more advanced order release strategy. In another study, we study the case where the contract manufacturer is a second source next to an internal manufacturing source for the same product and where the outsourcer faces inaccurate demand forecasts. The two sources are constraining the supply quantities in different ways. Its own manufacturing source is more rigid, cheaper and tightly capacitated, whereas the contract manufacturer is more flexible but more expensive. In that study, we compare the performance of two different allocation strategies by a simulation study in which we solve the model in a rolling horizon setting. The results show that the rigid allocation strategy (the cheaper source supplies each period a constant quantity) performs substantially better than the dynamic allocation strategy (each period the allocation quantities are dynamic) if the parameters are chosen properly. In another study, we study the outsourcer’s problem of deciding on the optimal reservation quantity under capacity uncertainty, i.e., without knowing what part of the reservation will be accepted. In that study, we develop a stochastic dynamic programming model for the problem and we characterize the optimal reservation and order policies. We conduct a numerical study where we also consider the case where the capacity allocation is dependent on the demand distribution. For that case, we show the structure of the optimal policies based on the numerical study. Further, the numerical results reveal several interesting managerial insights, such as that the optimal reservation policy is little sensitive to the uncertainty of the capacity allocation from the contract manufacturer. In that case, the optimal reservation quantities hardly increase, but the optimal policy suggests increasing the utilization of the allocated capacity. We also study the outsourced supply chain from the contract manufacturer’s perspective. In that study, we consider the case where the contract manufacturer serves a number of outsourcers with different levels of uncertainty. The contract manufacturer faces the question of how to allocate the contractual capacity flexibility in an optimal way. More precisely, we focus on the contract manufacturer’s decision to make the acceptation decision under uncertainty. The more the contract manufacturer accepts from an outsourcer, the more risk is taken by the contract manufacturer, as the outsourcer might not fully utilize the accepted reservation quantity. However, we assume that the outsourcer is willing to pay an additional amount to compensate the contract manufacturer for that risk. We develop a mixed-integer programming model, which optimizes the allocation of capacity flexibility by maximizing the expected profit. Offering more flexibility to the more risky outsourcer generates higher revenue, but also increases the penalty costs. The allocated capacity flexibilities are input (parameters) to the lower decision level, where the operational planning decisions are made and demands are observed. The simulation results reveal interesting managerial insights, such that the more uncertain outsourcer gets at least the same capacity flexibility allocated as the less uncertain outsourcer. Moreover, we have seen that when the acceptation decision is made, priority is given to the less uncertain outsourcer, because that information is the most valuable. However, we see the opposite effect when orders are placed, namely that priority is given to the more uncertain outsourcer, i.e., the most paying outsourcer, as no uncertainty is involved anymore. These insights are helpful for managers of contract manufacturers when having contract negotiations with the outsourcers. We believe that the results and insights that we obtained in the various research studies of this dissertation can contribute to solving the broader real-life problems related to the planning and control of outsourced supply chains. We also discuss potential managerial implications of our findings explicitly addressing the management decisions that may be affected by using the insights from our studies. Considering the operational implications of outsourcing when taking the strategic outsourcing decision will lead to a different and a better estimate of the transaction costs and probably to a different strategic outsourcing decision. Based on our research, we think that the transaction cost estimate will be higher if the outsourcer and the contract manufacturer do not agree on operational issues, such as the multi-level order release mechanism. From a tactical point of view, the outsourcer may include the options of postponement and cancellation in the contract, even if the contract manufacturer would charge little extra for these options. The results show that the benefits of including these options are substantial. Moreover, we showed that controlling a contract manufacturer operationally in the same way as an internal manufacturing source leads to a nervous ordering behaviour with a lot of changes and a lot of panicky communication between the outsourcer and the contract manufacturer. Combining the insights from different studies, one can also conclude that including little reservation cost is beneficial to both parties; it leads to a win-win situation. The outsourcer with a high level of demand uncertainty secures sufficient capacity allocation from the contract manufacturer and avoids more expensive penalty costs. For the outsourcer with less demand uncertainty, it is wise to set the contract such that the reservation costs are subtracted from the total paid amount. Moreover, this outsourcer may gain competitive advantage if his competitors operate in the same market by securing sufficient capacity allocation (by paying little reservation costs). For the contract manufacturer, including reservation cost is also beneficial, as it leads to a better match between the outsourcer’s reservation and ordering behaviour
    • 

    corecore