4 research outputs found

    A Layer Decomposition-Recomposition Framework for Neuron Pruning towards Accurate Lightweight Networks

    Full text link
    Neuron pruning is an efficient method to compress the network into a slimmer one for reducing the computational cost and storage overhead. Most of state-of-the-art results are obtained in a layer-by-layer optimization mode. It discards the unimportant input neurons and uses the survived ones to reconstruct the output neurons approaching to the original ones in a layer-by-layer manner. However, an unnoticed problem arises that the information loss is accumulated as layer increases since the survived neurons still do not encode the entire information as before. A better alternative is to propagate the entire useful information to reconstruct the pruned layer instead of directly discarding the less important neurons. To this end, we propose a novel Layer Decomposition-Recomposition Framework (LDRF) for neuron pruning, by which each layer's output information is recovered in an embedding space and then propagated to reconstruct the following pruned layers with useful information preserved. We mainly conduct our experiments on ILSVRC-12 benchmark with VGG-16 and ResNet-50. What should be emphasized is that our results before end-to-end fine-tuning are significantly superior owing to the information-preserving property of our proposed framework.With end-to-end fine-tuning, we achieve state-of-the-art results of 5.13x and 3x speed-up with only 0.5% and 0.65% top-5 accuracy drop respectively, which outperform the existing neuron pruning methods.Comment: accepted by AAAI19 as ora

    Attention Diversification for Domain Generalization

    Full text link
    Convolutional neural networks (CNNs) have demonstrated gratifying results at learning discriminative features. However, when applied to unseen domains, state-of-the-art models are usually prone to errors due to domain shift. After investigating this issue from the perspective of shortcut learning, we find the devils lie in the fact that models trained on different domains merely bias to different domain-specific features yet overlook diverse task-related features. Under this guidance, a novel Attention Diversification framework is proposed, in which Intra-Model and Inter-Model Attention Diversification Regularization are collaborated to reassign appropriate attention to diverse task-related features. Briefly, Intra-Model Attention Diversification Regularization is equipped on the high-level feature maps to achieve in-channel discrimination and cross-channel diversification via forcing different channels to pay their most salient attention to different spatial locations. Besides, Inter-Model Attention Diversification Regularization is proposed to further provide task-related attention diversification and domain-related attention suppression, which is a paradigm of "simulate, divide and assemble": simulate domain shift via exploiting multiple domain-specific models, divide attention maps into task-related and domain-related groups, and assemble them within each group respectively to execute regularization. Extensive experiments and analyses are conducted on various benchmarks to demonstrate that our method achieves state-of-the-art performance over other competing methods. Code is available at https://github.com/hikvision-research/DomainGeneralization.Comment: ECCV 2022. Code available at https://github.com/hikvision-research/DomainGeneralizatio

    A Layer Decomposition-Recomposition Framework for Neuron Pruning towards Accurate Lightweight Networks

    No full text
    corecore