33 research outputs found

    Online scheduling for real-time multitasking on reconfigurable hardware devices

    Get PDF
    Nowadays the ever increasing algorithmic complexity of embedded applications requires the designers to turn towards heterogeneous and highly integrated systems denoted as SoC (System-on-a-Chip). These architectures may embed CPU-based processors, dedicated datapaths as well as recon gurable units. However, embedded SoCs are submitted to stringent requirements in terms of speed, size, cost, power consumption, throughput, etc. Therefore, new computing paradigms are required to ful l the constraints of the applications and the requirements of the architecture. Recon gurable Computing is a promising paradigm that provides probably the best trade-o between these requirements and constraints. Dynamically recon gurable architectures are their key enabling technology. They enable the hardware to adapt to the application at runtime. However, these architectures raise new challenges in SoC design. For example, on one hand, designing a system that takes advantage of dynamic recon guration is still very time consuming because of the lack of design methodologies and tools. On the other hand, scheduling hardware tasks di ers from classical software tasks scheduling on microprocessor or multiprocessors systems, as it bears a further complicated placement problem. This thesis deals with the problem of scheduling online real-time hardware tasks on Dynamically Recon gurable Hardware Devices (DRHWs). The problem is addressed from two angles : (i) Investigating novel algorithms for online real-time scheduling/placement on DRHWs. (ii) Scheduling/Placement algorithms library for RTOS-driven Design Space Exploration (DSE). Regarding the first point, the thesis proposes two main runtime-aware scheduling and placement techniques and assesses their suitability for online real-time scenarios. The first technique discusses the impact of synthesizing, at design time, several shapes and/or sizes per hardware task (denoted as multi-shape task), in order to ease the online scheduling process. The second technique combines a looking-ahead scheduling approach with a slots-based recon gurable areas management that relies on a 1D placement. The results show that in both techniques, the scheduling and placement quality is improved without signi cantly increasing the algorithm time complexity. Regarding the second point, in the process of designing SoCs embedding recon gurable parts, new design paradigms tend to explore and validate as early as possible, at system level, the architectural design space. Therefore, the RTOS (Real-Time Operating System) services that manage the recon gurable parts of the SoC can be re fined. In such a context, gathering numerous hardware tasks scheduling and placement algorithms of various complexity vs performance trade-o s in a kind of library is required. In this thesis, proposed algorithms in addition to some existing ones are purposely implemented in C++ language, in order to insure the compatibility with any C++/SystemC based SoC design methodology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Task scheduling and placement for reconfigurable devices

    Get PDF
    Partially reconfigurable devices allow the execution of different tasks at the same time, removing tasks when they finish and inserting new tasks when they arrive. This dissertation investigates scheduling and placing real-time tasks (tasks with deadline) on reconfigurable devices. One basic scheduler is the First-Fit scheduler. By allowing the First-Fit scheduler to retry tasks while they can satisfy their deadlines, we found that its performance can be enhanced to be better than other schedulers. We also proposed a placement idea based on partitioning the reconfigurable area into regions of various widths, assigning a task to a region based on its width. This idea has a similar rejection rate to a First-Fit scheduler that retries placing tasks and performs better than the First-Fit that does not retry tasks. Also, this regions-based scheduling method has a better running time. Managing how the space will be shared among tasks is a problems of interest. The main function of the free-space manager is to maintain information about the free space (areas not used by active tasks) after any placement or deletion of a task. Speed and efficiency of the free-space data structure are important as well as its effect on scheduler performance. We introduce the use of maximal horizontal strips and maximal vertical strips to represent free space. This resulted in a faster free space manager compared to what has been used in the area. Most researchers in the area of scheduling on reconfigurable devices assumed a homogeneous FPGA with only CLBs in the reconfigurable area. Most reconfigurable devices offered in the market, however, are not homogeneous but heterogeneous with other components between CLBs. We studied the effect of heterogeneity on the performance of schedulers designed for a homogeneous structure. We found that current schedulers result in worse performance when applied to a heterogeneous structure, but by simple modifications, we can apply them to a heterogeneous structure and achieve good performance. Consequently, the approach of studying homogeneous FPGAs is a valid one, as the scheduling ideas discovered there do carry over to heterogeneous FPGAs

    Framework for Simulation of Heterogeneous MpSoC for Design Space Exploration

    Full text link
    Due to the ever-growing requirements in high performance data computation, multiprocessor systems have been proposed to solve the bottlenecks in uniprocessor systems. Developing efficient multiprocessor systems requires effective exploration of design choices like application scheduling, mapping, and architecture design. Also, fault tolerance in multiprocessors needs to be addressed. With the advent of nanometer-process technology for chip manufacturing, realization of multiprocessors on SoC (MpSoC) is an active field of research. Developing efficient low power, fault-tolerant task scheduling, and mapping techniques for MpSoCs require optimized algorithms that consider the various scenarios inherent in multiprocessor environments. Therefore there exists a need to develop a simulation framework to explore and evaluate new algorithms on multiprocessor systems. This work proposes a modular framework for the exploration and evaluation of various design algorithms for MpSoC system. This work also proposes new multiprocessor task scheduling and mapping algorithms for MpSoCs. These algorithms are evaluated using the developed simulation framework. The paper also proposes a dynamic fault-tolerant (FT) scheduling and mapping algorithm for robust application processing. The proposed algorithms consider optimizing the power as one of the design constraints. The framework for a heterogeneous multiprocessor simulation was developed using SystemC/C++ language. Various design variations were implemented and evaluated using standard task graphs. Performance evaluation metrics are evaluated and discussed for various design scenarios

    Smart real time operating system

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Developing an energy efficient real-time system

    Get PDF
    Increasing number of battery operated devices creates a need for energy-efficient real-time operating system for such devices. Designing a truly energy-efficient system is a multi-staged effort; this thesis consists of three main tasks that address different aspects of energy efficiency of a real-time system (RTS). The first chapter introduces an energy-efficient algorithm that alternates processor frequency using DVFS to schedule tasks on cores. Speed profiles is calculated for every task that gives information about how long a task would run for and at what processor speed. We pair tasks with similar speed profiles to give us a resultant merged speed profile that can be efficient scheduled on a cluster. Experiments carried out on ODROID-XU3 are compared with a reference approach that provides energy saving of up to 20%. The second chapter proposes power-aware techniques to segregate a task set over a heterogeneous platform such that the overall energy consumption is minimized. With the help of calculated speed profiles, second contribution of this work feasibly partitions a given task set into individual sets for a cluster based homogeneous platform. Various heuristics are proposed that are compared against a baseline approach with simulation results. The final chapter of this thesis focuses on the importance of having an underlying energy-efficient operating system. We discuss an energy-efficient way of porting a real-time operating system (RTOS), QP, over TMS320F28377S along with modifications to make the Operating System (OS) consume minimal energy for its operation --Abstract, page iii

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems
    corecore