135 research outputs found

    Downlink MIMO-NOMA with and without CSI: A short survey and comparison

    Get PDF
    Non-orthogonal multiple access (NOMA) concatenated with multiple-input multiple-output (MIMO) or with massive MIMO, has been under scrutiny for both broadband and machine-type communications (MTC), even though it has not been adopted in the latest 5G standard (3GPP Release 16), being left for beyond 5G. This paper dwells on the problems causing such cautiousness, and surveys different NOMA proposals for the downlink in cell-centered systems. Because acquiring channel state information at the transmitter (CSIT) may be hard, open-loop operation is an option. However, when users clustering is possible, due to some common statistical CSI, closed-loop operation should be exploited. The paper numerically compares these two operating modes. The users are clustered in beams and then successive interference cancellation (SIC) separates the power-domain NOMA (PD-NOMA) signals at the terminals. In the precoded closed-loop system, the Karhunen-Loève channel decomposition is used assuming that users within a cluster share the same slowly changing spatial correlation matrix. For a comparable number of antennas the two options perform similarly, however, while in the open-loop downlink the number of antennas at the BS is limited in practice, this restriction is waived in the precoded systems, with massive MIMO allowing for a larger number of clusters.info:eu-repo/semantics/acceptedVersio

    On the Performance Gain of NOMA over OMA in Uplink Communication Systems

    Full text link
    In this paper, we investigate and reveal the ergodic sum-rate gain (ESG) of non-orthogonal multiple access (NOMA) over orthogonal multiple access (OMA) in uplink cellular communication systems. A base station equipped with a single-antenna, with multiple antennas, and with massive antenna arrays is considered both in single-cell and multi-cell deployments. In particular, in single-antenna systems, we identify two types of gains brought about by NOMA: 1) a large-scale near-far gain arising from the distance discrepancy between the base station and users; 2) a small-scale fading gain originating from the multipath channel fading. Furthermore, we reveal that the large-scale near-far gain increases with the normalized cell size, while the small-scale fading gain is a constant, given by γ\gamma = 0.57721 nat/s/Hz, in Rayleigh fading channels. When extending single-antenna NOMA to MM-antenna NOMA, we prove that both the large-scale near-far gain and small-scale fading gain achieved by single-antenna NOMA can be increased by a factor of MM for a large number of users. Moreover, given a massive antenna array at the base station and considering a fixed ratio between the number of antennas, MM, and the number of users, KK, the ESG of NOMA over OMA increases linearly with both MM and KK. We then further extend the analysis to a multi-cell scenario. Compared to the single-cell case, the ESG in multi-cell systems degrades as NOMA faces more severe inter-cell interference due to the non-orthogonal transmissions. Besides, we unveil that a large cell size is always beneficial to the ergodic sum-rate performance of NOMA in both single-cell and multi-cell systems. Numerical results verify the accuracy of the analytical results derived and confirm the insights revealed about the ESG of NOMA over OMA in different scenarios.Comment: 51 pages, 7 figures, invited paper, submitted to IEEE Transactions on Communication
    • …
    corecore