33,407 research outputs found

    Lattice Boltzmann model approximated with finite difference expressions

    Full text link
    We show that the asymptotic properties of the link-wise artificial compressibility method are not compatible with a correct approximation of fluid properties. We propose to adapt the previous method through a framework suggested by the Taylor expansion method and to replace first order terms in the expansion by appropriate three or five points finite differences and to add non linear terms. The "FD-LBM" scheme obtained by this method is tested in two dimensions for shear wave, Stokes modes and Poiseuille flow. The results are compared with the usual lattice Boltzmann method in the framework of multiple relaxation times

    Curious convergence properties of lattice Boltzmann schemes for diffusion with acoustic scaling

    Full text link
    We consider the D1Q3 lattice Boltzmann scheme with an acoustic scale for the simulation of diffusive processes. When the mesh is refined while holding the diffusivity constant, we first obtain asymptotic convergence. When the mesh size tends to zero, however, this convergence breaks down in a curious fashion, and we observe qualitative discrepancies from analytical solutions of the heat equation. In this work, a new asymptotic analysis is derived to explain this phenomenon using the Taylor expansion method, and a partial differential equation of acoustic type is obtained in the asymptotic limit. We show that the error between the D1Q3 numerical solution and a finite-difference approximation of this acoustic-type partial differential equation tends to zero in the asymptotic limit. In addition, a wave vector analysis of this asymptotic regime demonstrates that the dispersion equation has nontrivial complex eigenvalues, a sign of underlying propagation phenomena, and a portent of the unusual convergence properties mentioned above

    Hermite regularization of the Lattice Boltzmann Method for open source computational aeroacoustics

    Full text link
    The lattice Boltzmann method (LBM) is emerging as a powerful engineering tool for aeroacoustic computations. However, the LBM has been shown to present accuracy and stability issues in the medium-low Mach number range, that is of interest for aeroacoustic applications. Several solutions have been proposed but often are too computationally expensive, do not retain the simplicity and the advantages typical of the LBM, or are not described well enough to be usable by the community due to proprietary software policies. We propose to use an original regularized collision operator, based on the expansion in Hermite polynomials, that greatly improves the accuracy and stability of the LBM without altering significantly its algorithm. The regularized LBM can be easily coupled with both non-reflective boundary conditions and a multi-level grid strategy, essential ingredients for aeroacoustic simulations. Excellent agreement was found between our approach and both experimental and numerical data on two different benchmarks: the laminar, unsteady flow past a 2D cylinder and the 3D turbulent jet. Finally, most of the aeroacoustic computations with LBM have been done with commercial softwares, while here the entire theoretical framework is implemented on top of an open source library (Palabos).Comment: 34 pages, 12 figures, The Journal of the Acoustical Society of America (in press

    Real-time lattice boltzmann shallow waters method for breaking wave simulations

    Get PDF
    We present a new approach for the simulation of surfacebased fluids based in a hybrid formulation of Lattice Boltzmann Method for Shallow Waters and particle systems. The modified LBM can handle arbitrary underlying terrain conditions and arbitrary fluid depth. It also introduces a novel method for tracking dry-wet regions and moving boundaries. Dynamic rigid bodies are also included in our simulations using a two-way coupling. Certain features of the simulation that the LBM can not handle because of its heightfield nature, as breaking waves, are detected and automatically turned into splash particles. Here we use a ballistic particle system, but our hybrid method can handle more complex systems as SPH. Both the LBM and particle systems are implemented in CUDA, although dynamic rigid bodies are simulated in CPU. We show the effectiveness of our method with various examples which achieve real-time on consumer-level hardware.Peer ReviewedPostprint (author's final draft
    • …
    corecore