8,743 research outputs found

    Coherent phenomena in semiconductors

    Full text link
    A review of coherent phenomena in photoexcited semiconductors is presented. In particular, two classes of phenomena are considered: On the one hand the role played by optically-induced phase coherence in the ultrafast spectroscopy of semiconductors; On the other hand the Coulomb-induced effects on the coherent optical response of low-dimensional structures. All the phenomena discussed in the paper are analyzed in terms of a theoretical framework based on the density-matrix formalism. Due to its generality, this quantum-kinetic approach allows a realistic description of coherent as well as incoherent, i.e. phase-breaking, processes, thus providing quantitative information on the coupled ---coherent vs. incoherent--- carrier dynamics in photoexcited semiconductors. The primary goal of the paper is to discuss the concept of quantum-mechanical phase coherence as well as its relevance and implications on semiconductor physics and technology. In particular, we will discuss the dominant role played by optically induced phase coherence on the process of carrier photogeneration and relaxation in bulk systems. We will then review typical field-induced coherent phenomena in semiconductor superlattices such as Bloch oscillations and Wannier-Stark localization. Finally, we will discuss the dominant role played by Coulomb correlation on the linear and non-linear optical spectra of realistic quantum-wire structures.Comment: Topical review in Semiconductor Science and Technology (in press) (Some of the figures are not available in electronic form

    Theory of spin-polarized transport in semiconductor heterojunctions: Proposal for spin injection and detection in silicon

    Full text link
    Spin injection and detection in silicon is a difficult problem, in part because the weak spin-orbit coupling and indirect gap preclude using standard optical techniques. We propose two ways to overcome this difficulty, and illustrate their operation by developing a model for spin-polarized transport across a heterojunction. We find that equilibrium spin polarization of holes leads to a strong modification of the spin and charge dynamics of electrons, and we show how the symmetry properties of the charge current can be exploited to detect spin injection in silicon using currently available techniques.Comment: 4 pages, 4 figures, added footnot

    Self-sustained current oscillations in the kinetic theory of semiconductor superlattices

    Get PDF
    We present the first numerical solutions of a kinetic theory description of self-sustained current oscillations in n-doped semiconductor superlattices. The governing equation is a single-miniband Boltzmann-Poisson transport equation with a BGK (Bhatnagar-Gross-Krook) collision term. Appropriate boundary conditions for the distribution function describe electron injection in the contact regions. These conditions seamlessly become Ohm's law at the injecting contact and the zero charge boundary condition at the receiving contact when integrated over the wave vector. The time-dependent model is numerically solved for the distribution function by using the deterministic Weighted Particle Method. Numerical simulations are used to ascertain the convergence of the method. The numerical results confirm the validity of the Chapman-Enskog perturbation method used previously to derive generalized drift-diffusion equations for high electric fields because they agree very well with numerical solutions thereof.Comment: 26 pages, 16 figures, to appear in J. Comput. Phy
    • …
    corecore