59 research outputs found

    Psychophysical evidence for a radial motion bias in complex motion discrimination

    Get PDF
    AbstractIn a graded motion pattern task we measured observers’ ability to discriminate small changes in the global direction of complex motion patterns. Performance varied systematically as a function of the test motion (radial, circular, or spiral) with thresholds for radial motions significantly lower than for circular motions. Thresholds for spiral motions were intermediate. In all cases thresholds were lower than for direction discrimination using planar motions and increased with removal of the radial speed gradient, consistent with the use of motion pattern specific mechanisms that integrate motion along complex trajectories. The radial motion bias and preference for speed gradients observed here is similar to the preference for expanding motions and speed gradients reported in cortical area MSTd, and may suggest the presence of comparable neural mechanisms in the human visual motion system

    A Neural Model of How the Brain Computes Heading from Optic Flow in Realistic Scenes

    Full text link
    Animals avoid obstacles and approach goals in novel cluttered environments using visual information, notably optic flow, to compute heading, or direction of travel, with respect to objects in the environment. We present a neural model of how heading is computed that describes interactions among neurons in several visual areas of the primate magnocellular pathway, from retina through V1, MT+, and MSTd. The model produces outputs which are qualitatively and quantitatively similar to human heading estimation data in response to complex natural scenes. The model estimates heading to within 1.5° in random dot or photo-realistically rendered scenes and within 3° in video streams from driving in real-world environments. Simulated rotations of less than 1 degree per second do not affect model performance, but faster simulated rotation rates deteriorate performance, as in humans. The model is part of a larger navigational system that identifies and tracks objects while navigating in cluttered environments.National Science Foundation (SBE-0354378, BCS-0235398); Office of Naval Research (N00014-01-1-0624); National-Geospatial Intelligence Agency (NMA201-01-1-2016

    Asymmetric Transfer of Task Dependent Perceptual Learning in Visual Motion Processing

    Get PDF
    The effects of perceptual learning (PL) on the sensory representation are not fully understood, especially for higher–level visual mechanisms more directly relevant to behavior. The objective of this research is to elucidate the mechanisms that mediate task dependent learning by determining where and how task dependent learning occurs in the later stages of visual motion processing. Eighteen subjects were trained to perform a dual–2TAFC visual discrimination task in which they were required to simultaneously detect changes in the direction of moving dots (task–1) and the proportion of red dots (task–2) shown in two stimulus apertures presented in either the left or right visual field. Subjects trained on the direction discrimination task for one of two types of motion, global radial motions (expansion and contraction) presented across stimulus apertures (global task), or an equivalent (local) motion stimulus formed by rotating the direction of motion in one aperture by 180°. In task–1 subjects were required to indicate whether the directions of motion in the second stimulus interval were rotated clockwise or counter–clockwise relative to the first stimulus interval. In task–2, designed to control for the spatial allocation of attention, subjects were required to indicate which stimulus interval contained a larger proportion of red dots across stimulus apertures. Sixteen of the eighteen subjects showed significant improvement on the trained tasks across sessions (p\u3c0.05). In subjects trained with radial motions, performance improvements transferred to the radial motions presented in the untrained visual field, and the equivalent local motion stimuli and untrained circular motions presented in the trained visual field. For subjects trained with local motion stimuli, learning was restricted to the trained local motion directions and their global motion equivalents presented in the trained visual field. These results suggest that perceptual learning of global and local motions is not symmetric, differentially impacting processing across multiple stages of visual processing whose activities are correlated. This pattern of learning is not fully coherent with a reverse hierarchy theory or bottom–up model of learning, suggesting instead a mechanism whereby learning occurs at the stage of visual processing that is most discriminative for the given task

    Cortical Dynamics of Navigation and Steering in Natural Scenes: Motion-Based Object Segmentation, Heading, and Obstacle Avoidance

    Full text link
    Visually guided navigation through a cluttered natural scene is a challenging problem that animals and humans accomplish with ease. The ViSTARS neural model proposes how primates use motion information to segment objects and determine heading for purposes of goal approach and obstacle avoidance in response to video inputs from real and virtual environments. The model produces trajectories similar to those of human navigators. It does so by predicting how computationally complementary processes in cortical areas MT-/MSTv and MT+/MSTd compute object motion for tracking and self-motion for navigation, respectively. The model retina responds to transients in the input stream. Model V1 generates a local speed and direction estimate. This local motion estimate is ambiguous due to the neural aperture problem. Model MT+ interacts with MSTd via an attentive feedback loop to compute accurate heading estimates in MSTd that quantitatively simulate properties of human heading estimation data. Model MT interacts with MSTv via an attentive feedback loop to compute accurate estimates of speed, direction and position of moving objects. This object information is combined with heading information to produce steering decisions wherein goals behave like attractors and obstacles behave like repellers. These steering decisions lead to navigational trajectories that closely match human performance.National Science Foundation (SBE-0354378, BCS-0235398); Office of Naval Research (N00014-01-1-0624); National Geospatial Intelligence Agency (NMA201-01-1-2016

    The role of terminators and occlusion cues in motion integration and segmentation: a neural network model

    Get PDF
    The perceptual interaction of terminators and occlusion cues with the functional processes of motion integration and segmentation is examined using a computational model. Inte-gration is necessary to overcome noise and the inherent ambiguity in locally measured motion direction (the aperture problem). Segmentation is required to detect the presence of motion discontinuities and to prevent spurious integration of motion signals between objects with different trajectories. Terminators are used for motion disambiguation, while occlusion cues are used to suppress motion noise at points where objects intersect. The model illustrates how competitive and cooperative interactions among cells carrying out these functions can account for a number of perceptual effects, including the chopsticks illusion and the occluded diamond illusion. Possible links to the neurophysiology of the middle temporal visual area (MT) are suggested

    Modeling and Computational Framework for the Specification and Simulation of Large-scale Spiking Neural Networks

    Get PDF
    Recurrently connected neural networks, in which synaptic connections between neurons can form directed cycles, have been used extensively in the literature to describe various neurophysiological phenomena, such as coordinate transformations during sensorimotor integration. Due to the directed cycles that can exist in recurrent networks, there is no well-known way to a priori specify synaptic weights to elicit neuron spiking responses to stimuli based on available neurophysiology. Using a common mean field assumption, that synaptic inputs are uncorrelated for sufficiently large populations of neurons, we show that the connection topology and a neuron\u27s response characteristics can be decoupled. This assumption allows specification of neuron steady-state responses independent of the connection topology. Specification of neuron responses necessitates the creation of a novel simulator (computational framework) which allows modeling of large populations of connected spiking neurons. We describe the implementation of a spike-based computational framework, designed to take advantage of high performance computing architectures when available. We show that performance of the computational framework is improved using multiple message passing processes for large populations of neurons, resulting in a worst-case linear relationship between the number of neurons and the time required to complete a simulation. Using the computational framework and the ability to specify neuron response characteristics independent of synaptic weights, we systematically investigate the effects of Hebbian learning on the hemodynamic response. Changes in the magnitude of the hemodynamic responses of neural populations are assessed using a forward model that relates population synaptic currents to the blood oxygen dependant (BOLD) response via local field potentials. We show that the magnitude of the hemodynamic response is not a accurate indicator of underlying spiking activity for all network topologies. Instead, we note that large changes in the aggregate response of the population (\u3e50%) can results in a decrease in the overall magnitude of the BOLD signal. We hypothesize that the hemodynamic response magnitude changed due to fluctuations in the balance of excitatory and inhibitory inputs in neural subpopulations. These results have important implications for mean-field models, suggesting that the underlying excitatory/inhibitory neural dynamics within a population may need to be taken into account to accurately predict hemodynamic responses

    Dynamic and Integrative Properties of the Primary Visual Cortex

    Get PDF
    The ability to derive meaning from complex, ambiguous sensory input requires the integration of information over both space and time, as well as cognitive mechanisms to dynamically shape that integration. We have studied these processes in the primary visual cortex (V1), where neurons have been proposed to integrate visual inputs along a geometric pattern known as the association field (AF). We first used cortical reorganization as a model to investigate the role that a specific network of V1 connections, the long-range horizontal connections, might play in temporal and spatial integration across the AF. When retinal lesions ablate sensory information from portions of the visual field, V1 undergoes a process of reorganization mediated by compensatory changes in the network of horizontal collaterals. The reorganization accompanies the brain’s amazing ability to perceptually “fill-inâ€, or “seeâ€, the lost visual input. We developed a computational model to simulate cortical reorganization and perceptual fill-in mediated by a plexus of horizontal connections that encode the AF. The model reproduces the major features of the perceptual fill-in reported by human subjects with retinal lesions, and it suggests that V1 neurons, empowered by their horizontal connections, underlie both perceptual fill-in and normal integrative mechanisms that are crucial to our visual perception. These results motivated the second prong of our work, which was to experimentally study the normal integration of information in V1. Since psychophysical and physiological studies suggest that spatial interactions in V1 may be under cognitive control, we investigated the integrative properties of V1 neurons under different cognitive states. We performed extracellular recordings from single V1 neurons in macaques that were trained to perform a delayed-match-to-sample contour detection task. We found that the ability of V1 neurons to summate visual inputs from beyond the classical receptive field (cRF) imbues them with selectivity for complex contour shapes, and that neuronal shape selectivity in V1 changed dynamically according to the shapes monkeys were cued to detect. Over the population, V1 encoded subsets of the AF, predicted by the computational model, that shifted as a function of the monkeys’ expectations. These results support the major conclusions of the theoretical work; even more, they reveal a sophisticated mode of form processing, whereby the selectivity of the whole network in V1 is reshaped by cognitive state

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Neural models of inter-cortical networks in the primate visual system for navigation, attention, path perception, and static and kinetic figure-ground perception

    Full text link
    Vision provides the primary means by which many animals distinguish foreground objects from their background and coordinate locomotion through complex environments. The present thesis focuses on mechanisms within the visual system that afford figure-ground segregation and self-motion perception. These processes are modeled as emergent outcomes of dynamical interactions among neural populations in several brain areas. This dissertation specifies and simulates how border-ownership signals emerge in cortex, and how the medial superior temporal area (MSTd) represents path of travel and heading, in the presence of independently moving objects (IMOs). Neurons in visual cortex that signal border-ownership, the perception that a border belongs to a figure and not its background, have been identified but the underlying mechanisms have been unclear. A model is presented that demonstrates that inter-areal interactions across model visual areas V1-V2-V4 afford border-ownership signals similar to those reported in electrophysiology for visual displays containing figures defined by luminance contrast. Competition between model neurons with different receptive field sizes is crucial for reconciling the occlusion of one object by another. The model is extended to determine border-ownership when object borders are kinetically-defined, and to detect the location and size of shapes, despite the curvature of their boundary contours. Navigation in the real world requires humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature. In primates, MSTd has been implicated in heading perception. A model of V1, medial temporal area (MT), and MSTd is developed herein that demonstrates how MSTd neurons can simultaneously encode path curvature and heading. Human judgments of heading are accurate in rigid environments, but are biased in the presence of IMOs. The model presented here explains the bias through recurrent connectivity in MSTd and avoids the use of differential motion detectors which, although used in existing models to discount the motion of an IMO relative to its background, is not biologically plausible. Reported modulation of the MSTd population due to attention is explained through competitive dynamics between subpopulations responding to bottom-up and top- down signals

    Bio-Inspired Computer Vision: Towards a Synergistic Approach of Artificial and Biological Vision

    Get PDF
    To appear in CVIUStudies in biological vision have always been a great source of inspiration for design of computer vision algorithms. In the past, several successful methods were designed with varying degrees of correspondence with biological vision studies, ranging from purely functional inspiration to methods that utilise models that were primarily developed for explaining biological observations. Even though it seems well recognised that computational models of biological vision can help in design of computer vision algorithms, it is a non-trivial exercise for a computer vision researcher to mine relevant information from biological vision literature as very few studies in biology are organised at a task level. In this paper we aim to bridge this gap by providing a computer vision task centric presentation of models primarily originating in biological vision studies. Not only do we revisit some of the main features of biological vision and discuss the foundations of existing computational studies modelling biological vision, but also we consider three classical computer vision tasks from a biological perspective: image sensing, segmentation and optical flow. Using this task-centric approach, we discuss well-known biological functional principles and compare them with approaches taken by computer vision. Based on this comparative analysis of computer and biological vision, we present some recent models in biological vision and highlight a few models that we think are promising for future investigations in computer vision. To this extent, this paper provides new insights and a starting point for investigators interested in the design of biology-based computer vision algorithms and pave a way for much needed interaction between the two communities leading to the development of synergistic models of artificial and biological vision
    • …
    corecore