24 research outputs found

    Design Of Silicon Controlled Rectifers Sic] For Robust Electrostatic Discharge Protection Applications

    Get PDF
    Electrostatic Discharge (ESD) phenomenon happens everywhere in our daily life. And it can occurs through the whole lifespan of an Integrated Circuit (IC), from the early wafer fabrication process, extending to assembly operation, and finally ending at the user‟s site. It has been reported that up to 35% of total IC field failures are ESD-induced, with estimated annual costs to the IC industry running to several billion dollars. The most straightforward way to avoid the ICs suffering from the threatening of ESD damages is to develop on-chip ESD protection circuits which can afford a robust, low-impedance bypassing path to divert the ESD current to the ground. There are three different types of popular ESD protection devices widely used in the industry, and they are diodes or diodes string, Grounded-gate NMOS (GGNMOS) and Silicon Controlled Rectifier (SCR). Among these different protection solutions, SCR devices have the highest ESD current conduction capability due to the conductivity modulation effect. But SCR devices also have several shortcomings such as the higher triggering point, the lower clamping voltage etc, which will become obstacles for SCR to be widely used as an ESD protection solutions in most of the industry IC products. At first, in some applications with pin voltage goes below ground or above the VDD, dual directional protection between each two pins are desired. The traditional dual-directional SCR structures will consume a larger silicon area or lead to big leakage current issue due to the happening of punch-through effect. A new and improved SCR structure for low-triggering ESD iv applications has been proposed in this dissertation and successfully realized in a BiCMOS process. Such a structure possesses the desirable characteristics of a dual-polarity conduction, low trigger voltage, small leakage current, large failing current, adjustable holding voltage, and compact size. Another issue with SCR devices is its deep snapback or lower holding voltage, which normally will lead to the latch-up happen. To make SCR devices be immunity with latch-up, it is required to elevate its holding voltage to be larger than the circuits operational voltage, which can be several tens volts in modern power electronic circuits. Two possible solutions have been proposed to resolve this issue. One solution is accomplished by using a segmented emitter topology based on the concept that the holding voltage can be increased by reducing the emitter injection efficiency. Experimental data show that the new SCR can posses a holding voltage that is larger than 40V and a failure current It2 that is higher than 28mA/um. The other solution is accomplished by stacking several low triggering voltage high holding voltage SCR cells together. The TLP measurement results show that this novel SCR stacking structure has an extremely high holding voltage, very small snapback, and acceptable failure current. The High Holding Voltage Figure of Merit (HHVFOM) has been proposed to be a criterion for different high holding voltage solutions. The HHVFOM comparison of our proposed structures and the existing high holding voltage solutions also show the advantages of our work

    On-Chip ESD Protection Design: Optimized Clamps

    Get PDF
    The extensive use of Integrated Circuits (ICs) means complex working conditions for these tiny chips. To guarantee the ICs could work properly in various environments, some special protection strategies are required to improve the reliability of system. From all the possible reliability issues, the electrostatics discharge (ESD) might be the most common one. The peak current of electrostatics can be as high as tens of amperes and the peak voltage can be over thousand voltages. In contrast, the size of semiconductor device fabricated is continuing to scale down, making it even more vulnerable to high level overstress and current surge induced by ESD event. To protect the on-chip semiconductor from damage, some extra clamp cells are put together to consist a network. The network can redirect the superfluous current through the ESD network and clamp the voltage to a low level. In this dissertation, one design concept is introduced that uses the combination of some basic ESD devices to meet different requirements first, and then tries to establish parasitic current path among these devices to further increase the current handling capability. Some design cases are addressed to demonstrate this design concept is valid and efficient: 1. A combination of silicon-controlled-rectifier (SCR) and diode cluster is implemented to resolve the overshoot issue under fast ESD event. 2. A new SCR structure is introduced, which can be used as padding device to increase the clamping voltage without affecting other parameters. Based on this padding device, two design cases are introduced. 3. A controllable SCR clamp structure is presented, which has high current handling capability and can be controlled with by small signal. All these structures and topologies described in this dissertation are compatible with most of popular semiconductor fabrication process

    Design, Characterization And Analysis Of Electrostatic Discharge (esd) Protection Solutions In Emerging And Modern Technologies

    Get PDF
    Electrostatic Discharge (ESD) is a significant hazard to electronic components and systems. Based on a specific processing technology, a given circuit application requires a customized ESD consideration that includes the devices’ operating voltage, leakage current, breakdown constraints, and footprint. As new technology nodes mature every 3-5 years, design of effective ESD protection solutions has become more and more challenging due to the narrowed design window, elevated electric field and current density, as well as new failure mechanisms that are not well understood. The endeavor of this research is to develop novel, effective and robust ESD protection solutions for both emerging technologies and modern complementary metal–oxide–semiconductor (CMOS) technologies. The Si nanowire field-effect transistors are projected by the International Technology Roadmap for Semiconductors as promising next-generation CMOS devices due to their superior DC and RF performances, as well as ease of fabrication in existing Silicon processing. Aiming at proposing ESD protection solutions for nanowire based circuits, the dimension parameters, fabrication process, and layout dependency of such devices under Human Body Mode (HBM) ESD stresses are studied experimentally in company with failure analysis revealing the failure mechanism induced by ESD. The findings, including design methodologies, failure mechanism, and technology comparisons should provide practical knowhow of the development of ESD protection schemes for the nanowire based integrated circuits. Organic thin-film transistors (OTFTs) are the basic elements for the emerging flexible, printable, large-area, and low-cost organic electronic circuits. Although there are plentiful studies focusing on the DC stress induced reliability degradation, the operation mechanism of OTFTs iv subject to ESD is not yet available in the literature and are urgently needed before the organic technology can be pushed into consumer market. In this work, the ESD operation mechanism of OTFT depending on gate biasing condition and dimension parameters are investigated by extensive characterization and thorough evaluation. The device degradation evolution and failure mechanism under ESD are also investigated by specially designed experiments. In addition to the exploration of ESD protection solutions in emerging technologies, efforts have also been placed in the design and analysis of a major ESD protection device, diodetriggered-silicon-controlled-rectifier (DTSCR), in modern CMOS technology (90nm bulk). On the one hand, a new type DTSCR having bi-directional conduction capability, optimized design window, high HBM robustness and low parasitic capacitance are developed utilizing the combination of a bi-directional silicon-controlled-rectifier and bi-directional diode strings. On the other hand, the HBM and Charged Device Mode (CDM) ESD robustness of DTSCRs using four typical layout topologies are compared and analyzed in terms of trigger voltage, holding voltage, failure current density, turn-on time, and overshoot voltage. The advantages and drawbacks of each layout are summarized and those offering the best overall performance are suggested at the en

    Design And Characterization Of Noveldevices For New Generation Of Electrostaticdischarge (esd) Protection Structures

    Get PDF
    The technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications\u27 performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the design of robust protection structures and circuits remains challenging because ESD failure mechanisms continue to become more acute and design windows less flexible. The sensitivity of smaller devices, along with a limited understanding of the ESD phenomena and the resulting empirical approach to solving the problem have yielded time consuming, costly and unpredictable design procedures. As turnaround design cycles in new technologies continue to decrease, the traditional trial-and-error design strategy is no longer acceptable, and better analysis capabilities and a systematic design approach are essential to accomplish the increasingly difficult task of adequate ESD protection-circuit design. This dissertation presents a comprehensive design methodology for implementing custom on-chip ESD protection structures in different commercial technologies. First, the ESD topic in the semiconductor industry is revised, as well as ESD standards and commonly used schemes to provide ESD protection in ICs. The general ESD protection approaches are illustrated and discussed using different types of protection components and the concept of the ESD design window. The problem of implementing and assessing ESD protection structures is addressed next, starting from the general discussion of two design methods. The first ESD design method follows an experimental approach, in which design requirements are obtained via fabrication, testing and failure analysis. The second method consists of the technology computer aided design (TCAD)-assisted ESD protection design. This method incorporates numerical simulations in different stages of the ESD design process, and thus results in a more predictable and systematic ESD development strategy. Physical models considered in the device simulation are discussed and subsequently utilized in different ESD designs along this study. The implementation of new custom ESD protection devices and a further integration strategy based on the concept of the high-holding, low-voltage-trigger, silicon controlled rectifier (SCR) (HH-LVTSCR) is demonstrated for implementing ESD solutions in commercial low-voltage digital and mixed-signal applications developed using complementary metal oxide semiconductor (CMOS) and bipolar CMOS (BiCMOS) technologies. This ESD protection concept proposed in this study is also successfully incorporated for implementing a tailored ESD protection solution for an emerging CMOS-based embedded MicroElectroMechanical (MEMS) sensor system-on-a-chip (SoC) technology. Circuit applications that are required to operate at relatively large input/output (I/O) voltage, above/below the VDD/VSS core circuit power supply, introduce further complications in the development and integration of ESD protection solutions. In these applications, the I/O operating voltage can extend over one order of magnitude larger than the safe operating voltage established in advanced technologies, while the IC is also required to comply with stringent ESD robustness requirements. A practical TCAD methodology based on a process- and device- simulation is demonstrated for assessment of the device physics, and subsequent design and implementation of custom P1N1-P2N2 and coupled P1N1-P2N2//N2P3-N3P1 silicon controlled rectifier (SCR)-type devices for ESD protection in different circuit applications, including those applications operating at I/O voltage considerably above/below the VDD/VSS. Results from the TCAD simulations are compared with measurements and used for developing technology- and circuit-adapted protection structures, capable of blocking large voltages and providing versatile dual-polarity symmetric/asymmetric S-type current-voltage characteristics for high ESD protection. The design guidelines introduced in this dissertation are used to optimize and extend the ESD protection capability in existing CMOS/BiCMOS technologies, by implementing smaller and more robust single- or dual-polarity ESD protection structures within the flexibility provided in the specific fabrication process. The ESD design methodologies and characteristics of the developed protection devices are demonstrated via ESD measurements obtained from fabricated stand-alone devices and on-chip ESD protections. The superior ESD protection performance of the devices developed in this study is also successfully verified in IC applications where the standard ESD protection approaches are not suitable to meet the stringent area constraint and performance requirement

    Design of Novel Devices and Circuits for Electrostatic Discharge Protection Applications in Advanced Semiconductor Technologies

    Get PDF
    Electrostatic Discharge (ESD), as a subset of Electrical Overstress (EOS), was reported to be in charge of more than 35% of failure in integrated circuits (ICs). Especially in the manufacturing process, the silicon wafer turns out to be a functional ICs after numerous physical, chemical and mechanical processes, each of which expose the sensitive and fragile ICs to ESD environment. In normal end-user applications, ESD from human and machine handling, surge and spike signals in the power supply, and wrong supplying signals, will probably cause severe damage to the ICs and even the whole systems. Generally, ESD protections are evaluated after wafer and even system fabrication, increasing the development period and cost if the protections cannot meet customer\u27s requirements. Therefore, it is important to design and customize robust and area-efficient ESD protections for the ICs at the early development stage. As the technologies generally scaling down, however, ESD protection clamps remain comparable area consumption in the recent years because they provide the discharging path for the ESD energy which rarely scales down. Diode is the most simple and effective device for ESD protection in ICs, but the usage is significantly limited by its low turn-on voltage. MOS devices can be triggered by a dynamic-triggered RC circuit for IOs operating at low voltage, while the one triggered by a static-triggered network, e.g., zener-resistor circuit or grounded-gate configuration, provides a high trigger voltage for high-voltage applications. However, the relatively low current discharging capability makes MOS devices as the secondary choice. Silicon-controlled rectifier (SCR) has become famous due to its high robustness and area efficiency, compared to diode and MOS. In this dissertation, a comprehensive design methodology for SCR based on simulation and measurement are presented for different advanced commercial technologies. Furthermore, an ESD clamp is designed and verified for the first time for the emerging GaN technology. For the SCR, no matter what modification is going to be made, the first concern when drawing the layout is to determine the layout geometrical style, finger width and finger number. This problem for diode and MOS device were studied in detail, so the same method was usually used in SCR. The research in this dissertation provides a closer look into the metal layout effect to the SCR, finding out the optimized robustness and minimized side-effect can be obtained by using specific layout geometry. Another concern about SCR is the relatively low turn-on speed when the IOs under protection is stressed by ESD pulses having very fast rising time, e.g., CDM and IEC 61000-4-2 pulses. On this occasion a large overshoot voltage is generated and cause damage to internal circuit component like gate oxides of MOS devices. The key determination of turn-on speed of SCR is physically investigated, followed by a novel design on SCR by directly connecting the Anode Gate and Cathode Gate to form internal trigger (DCSCR), with improved performance verified experimentally in this dissertation. The overshoot voltage and trigger voltage of the DCSCR will be significantly reduced, in return a better protection for internal circuit component is offered without scarifying neither area or robustness. Even though two SCR\u27s with single direction of ESD current path can be constructed in reverse parallel to form bidirectional protection to pins, stand-alone bidirectional SCR (BSCR) is always desirable for sake of smaller area. The inherent high trigger voltage of BSCR that only fit in high-voltage technologies is overcome by embedding a PMOS transistor as trigger element, making it highly suitable for low-voltage ESD protection applications. More than that, this modification simultaneously introduces benefits including high robustness and low overshoot voltage. For high voltage pins, however, it presents another story for ESD designs. The high operation voltages require that a high trigger voltage and high holding voltage, so as to reduce the false trigger and latch-up risk. For several capacitive pins, the displacement current induced by a large snapback will cause severe damage to internal circuits. A novel design on SCR is proposed to minimize the snapback with adjustable trigger and holding voltage. Thanks to the additional a PIN diode, the similar high robustness and stable thermal leakage performance to SCR is maintained. For academic purpose of ESD design, it is always difficult to obtain the complete process deck in TCAD simulation because those information are highly confidential to the companies. Another challenge of using TCAD is the difficulty of maintaining the accuracy of physics models and predicting the performance of the other structures. In this dissertation a TCAD-aid ESD design methodology is used to evaluate ESD performance before the silicon shuttle. GaN is a promising material for high-voltage high-power RF application compared to the GaAs. However, distinct from GaAs, the leaky problem of the schottky junction and the lack of choice of passive/active components in GaN technology limit the ESD protection design, which will be discussed in this dissertation. However, a promising ESD protection clamp is finally developed based on depletion-mode pHEMT with adjustable trigger voltage, reasonable leakage current and high robustness

    Design, Simulation and Characterization of Novel Electrostatic Discharge Protection Devices and Circuits in Advanced Silicon Technologies

    Get PDF
    Electrostatic Discharge (ESD) has been one of the major reliability concerns in the advanced silicon technologies and it becomes more important with technology scaling. It has been reported that more than 35% of the failures in integrated circuits (ICs) are ESD induced. ESD event is a phenomenon that a finite amount of charges transfer between two objects with different potential in a quite short time. Such event contains a large energy and the ICs without proper ESD protection could be destroyed easily, so ESD protection solutions are essential to semiconductor industry. ESD protection design consists of on-chip and off-chip ESD protection design, and the research works in this dissertation are all conducted in on-chip level, which incorporate the ESD protection devices and circuits into the microchip, to provide with basic ESD protection from manufacturing to customer use. The basic idea of ESD protection design is to provide a path with low impedance which directs most of the ESD current to flow through itself instead of the core circuit, and the ESD protection path must be robust enough to make sure that it does not fail before the core circuit. In this way, proper design on protection devices and circuits should be considered carefully. To assist the understanding and design of ESD protection, the ESD event in real world has been classified into a few ESD model including Human Body Model (HBM), Machine Model (MM), Charged Device Model (CDM), etc. Some mainstream testing method and industry standard are also introduced, including Transmission Line Pulse (TLP), and IEC 61000-4-2. ESD protection devices including diode, Gate-Grounded N-type MOSFET (GGNMOS), Silicon Controlled Rectifier (SCR) are basic elements for ESD protection design. In this dissertation, the device characteristics in ESD event and their applications are introduced. From the perspective of the whole chip ESD protection design, the concept of circuit level ESD protection and the ESD clamps are also briefly introduced. Technology Computer Aided Design (TCAD) and Simulation Program with Integrated Circuit Emphasis (SPICE) simulation is widely used in ESD protection design. In this dissertation, TCAD and SPICE simulation are carried out for a few times for both of pre-tapeout evaluation on characteristics of the proposed device and circuit and post-tapeout analysis on structure operating mechanism. Automotive electronics has been a popular subject in semiconductor industry, and due to the special requirement of the automotive applications like the capacitive pins, the ESD protection device used in such applications need to be specially designed. In this dissertation, a few SCRs without snapback are discussed in detail. To avoid core circuit damages caused the displacement current induced by the large snapback in conventional SCR, an eliminated/minimized snapback is preferred in a selection of the protection device. Two novel SCRs are proposed for High Voltage (HV), Medium Voltage (MV), and Low Voltage (LV) automotive ESD protection. The typical operating temperature for ICs is up to 125°C, however in automotive applications, the operating temperature may extend up to 850°C. In this way, the characteristics of the ESD protection device under the elevated temperatures will be an essential part to investigate for automotive ESD protection design. In this dissertation, the high temperature characteristics of ESD protection devices including diode and a few SCRs is measured and discussed in detail. TCAD simulation are also conducted to explain the underlying physical mechanism. This work provides with a useful insight and information to ESD protection design in high temperature applications. Besides the high temperature environment, ESD protection are also highly needed for electronics working in other extreme environment like the space. Space is an environment that contains kinds of radiation source and at the same time can generate abundant ESD. The ESD adhering to the space systems could be a potential threat to the space electronics. At the same time, the characteristics of the ESD protection part especially the basic protection device used in the space electronics could be influenced after the irradiation in the space. Therefore, the investigation of the radiation effects on ESD protection devices are necessary. In this dissertation, the total ionizing dose (TID) effects on ESD protection devices are investigated. The devices are irradiated with 1.5 MeV He+ and characterized with TLP tester. The pre- and post-irradiation characteristics are compared and the variation on key ESD parameters are analyzed and discussed. This work offers a useful insight on ESD devices\u27 operation under TID and help with the device designing on ESD protection devices for space electronics. Single ESD protection devices are essential part constructing the ESD protection network, however the optimization on ESD clamp circuit design is also important on building an efficient whole chip ESD protection network. In this dissertation, the design and simulation of a novel voltage triggered ESD detection circuit are introduced. The voltage triggered ESD detection circuit is proposed in a 0.18 um CMOS technology. Comparing with the conventional RC based detection circuit, the proposed circuit realizes a higher triggering efficiency with a much smaller footprint, and is immune to false triggering under fast power-up events. The proposed circuit has a better sensitivity to ESD event and is more reliable in ESD protection applications. The leakage current has been a concern with the scaling down of the thickness of the gate oxide. Therefore, a proper design of the ESD clamp for power rail ESD protection need to be specially considered. In this dissertation, a design of a novel ESD clamp with low leakage current is analyzed. The proposed clamp realized a pretty low leakage current up to 12 nA, and has a smaller footprint than conventional design. It also has a long hold-on time under ESD event and a quick turn-off mechanism for false triggering. SPICE simulation is carried out to evaluate the operation of the proposed ESD clamp

    Analysis of design strategies for RF ESD problems in CMOS circuits

    Get PDF
    This thesis analyses the design strategies used to protect RF circuits that are implemented in CMOS technologies. It investigates, in detail, the physical mechanisms involved when a ggNMOS structure is exposed to an ESD event and undergoes snapback. The understanding gained is used to understand why the performance of the current RF ESD clamp is poor and suggestions are made as to how the performance of ggNMOS clamps can be improved beyond the current body of knowledge. The ultimate aim is to be able to design effective ESD protection clamps whilst minimising the effect the circuit has on RF I/O signals. A current ggNMOS based RF ESD I/O protection circuit is analysed in detail using a Transmission Line Pulse (TLP) tester. This is shown to be a very effective diagnostic tool by showing many characteristics of the ggNMOS during the triggering and conducting phase of the ESD event and demonstrate deficiencies in the clamp design. The use of a FIB enhances the analysis by allowing the isolation of individual components in the circuit and therefore their analysis using the TLP tester. SPICE simulations are used to provide further commentary on the debate surrounding the specification required of a TLP tester for there to be a good correlation between a TLP test and the industry standard Human Body Model (HBM) ESD test. Finite element simulations are used to probe deeper in to the mechanisms involved when a ggNMOS undergoes snapback especially with regard to the contribution parasitic components within the ggNMOS make to the snapback process. New ggNMOS clamps are proposed which after some modification are shown to work. Some of the finite element experiments are repeated in a 0.18ÎĽĎ€7. process CMOS test chip and a comparison is made between the two sets of results. In the concluding chapter understanding that has been gained from previous chapters is combined with the published body of knowledge to suggest and explain improvements in the design of a ggNMOS for RF and standard applications. These improvements will improve homogeneity of ggNMOS operation thus allowing the device size to be reduced and parasitic loading for a given ESD performance. These techniques can also be used to ensure that the ESD current does not take an unintended path through the chip

    On-chip Electro-static Discharge (esd) Protection For Radio-frequency Integrated Circuits

    Get PDF
    Electrostatic Discharge (ESD) phenomenon is a common phenomenon in daily life and it could damage the integrated circuit throughout the whole cycle of product from the manufacturing. Several ESD stress models and test methods have been used to reproduce ESD events and characterize ESD protection device\u27s performance. The basic ESD stress models are: Human Body Model (HBM), Machine Model (MM), and Charged Device Model (CDM). On-chip ESD protection devices are widely used to discharge ESD current and limit the overstress voltage under different ESD events. Some effective ESD protection devices were reported for low speed circuit applications such as analog ICs or digital ICs in CMOS process. On the contrast, only a few ESD protection devices available for radio frequency integrated circuits (RF ICs). ESD protection for RF ICs is more challenging than traditional low speed CMOS ESD protection design because of the facts that: (1) Process limitation: High-performance RF ICs are typically fabricated in compound semiconductor process such as GaAs pHEMT and SiGe HBT process. And some proved effective ESD devices (e.g. SCR) are not able to be fabricated in those processes due to process limitation. Moreover, compound semiconductor process has lower thermal conductivity which will worsen its ESD damage immunity. (2) Parasitic capacitance limitation: Even for RF CMOS process, the inherent parasitic capacitance of ESD protection devices is a big concern. Therefore, this dissertation will contribute on ESD protection designs for RF ICs in all the major processes including GaAs pHEMT, SiGe BiCMOS and standard CMOS. iv The ESD protection for RF ICs in GaAs pHEMT process is very difficult, and the typical HBM protection level is below 1-kV HBM level. The first part of our work is to analyze pHEMT\u27s snapback, post-snapback saturation and thermal failure under ESD stress using TLP-like Sentaurus TCAD simulation. The snapback is caused by virtual bipolar transistor due to large electron-hole pairs impacted near drain region. Postsnapback saturation is caused by temperature-induced mobility degradation due to IIIV compound semiconductor materials\u27 poor thermal conductivity. And thermal failure is found to be caused by hot spot located in pHEMT\u27s InGaAs layer. Understanding of these physical mechanisms is critical to design effective ESD protection device in GaAs pHEMT process. Several novel ESD protection devices were designed in 0.5um GaAs pHEMT process. The multi-gate pHEMT based ESD protection devices in both enhancementmode and depletion-mode were reported and characterized then. Due to the multiple current paths available in the multi-gate pHEMT, the new ESD protection clamp showed significantly improved ESD performances over the conventional single-gate pHEMT ESD clamp, including higher current discharge capability, lower on-state resistance, and smaller voltage transient. We proposed another further enhanced ESD protection clamp based on a novel drain-less, multi-gate pHEMT in a 0.5um GaAs pHEMT technology. Based on Barth 4002 TLP measurement results, the ESD protection devices proposed in this chapter can improve the ESD level from 1-kV (0.6 A It2) to up to 8-kV ( \u3e 5.2 A It2) under HBM. v Then we optimized SiGe-based silicon controlled rectifiers (SiGe SCR) in SiGe BiCMOS process. SiGe SCR is considered a good candidate ESD protection device in this process. But the possible slow turn-on issue under CDM ESD events is the major concern. In order to optimize the turn-on performance of SiGe SCR against CDM ESD, the Barth 4012 very fast TLP (vfTLP) and vfTLP-like TCAD simulation were used for characterization and analysis. It was demonstrated that a SiGe SCR implemented with a P PLUG layer and minimal PNP base width can supply the smallest peak voltage and fastest response time which is resulted from the fact that the impact ionization region and effective base width in the SiGe SCR were reduced due to the presence of the P PLUG layer. This work demonstrated a practical approach for designing optimum ESD protection solutions for the low-voltage/radio frequency integrated circuits in SiGe BiCMOS process. In the end, we optimized SCRs in standard silicon-based CMOS process to supply protection for high speed/radio-frequency ICs. SCR is again considered the best for its excellent current handling ability. But the parasitic capacitance of SCRs needs to be reduced to limit SCR\u27s impact to RF performance. We proposed a novel SCR-based ESD structure and characterize it experimentally for the design of effective ESD protection in high-frequency CMOS based integrated circuits. The proposed SCR-based ESD protection device showed a much lower parasitic capacitance and better ESD performance than the conventional SCR and a low-capacitance SCR reported in the literature. The physics underlying the low capacitance was explained by measurements using HP 4284 capacitance meter. vi Throughout the dissertation work, all the measurements are mainly conducted using Barth 4002 transimission line pulsing (TLP) and Barth 4012 very fast transmission line pulsing (vfTLP) testers. All the simulation was performed using Sentaurus TCAD tool from Synopsys

    Design of Low-Capacitance Electrostatic Discharge (ESD) Protection Devices in Advanced Silicon Technologies.

    Get PDF
    Electrostatic discharge (ESD) related failure is a major IC reliability concern and this is particularly true as technology continues shrink to nano-metric dimensions. ESD design window research shows that ESD robustness of victim devices keep decreasing from 350nm bulk technology to 7nm FinFET technologies. In the meantime, parasitic capacitance of ESD diode with same It2 in FinFET technologies is approximately 3X compared with that in planar technologies. Thus transition from planar to FinFET technology requires more robust ESD protection however the large parasitic capacitance of ESD protection cell is problematic in high-speed interface design. To reduce the parasitic capacitance, a dual diode silicon controlled rectifier (DD-SCR) is presented in this dissertation. This design can exhibit good trade-offs between ESD robustness and parasitic capacitance characteristics. Besides, different bounding materials lead to performance variations in DD-SCRs are compared. Radio frequency (RF) technology is also demanded low capacitance ESD protection. To address this concern, a ?-network is presented, providing robust ESD protection for 10-60 GHz RF circuit. Like a low pass ? filter, the network can reflect high frequency RF signals and transmit low frequency ESD pulses. Given proper inductor value, networks can work as robust ESD solutions at a certain Giga Hertz frequency range, making this design suitable for broad band protection in RF input/outputs (I/Os). To increase the holding voltage and reduce snapback, a resistor assist triggering heterogeneous stacking structure is presented in this dissertation, which can increase the holding voltage and also keep the trigger voltage nearly as same as a single SCR device

    Electrostatic discharge protection circuit for high-speed mixed-signal circuits

    Get PDF
    ESD, the discharge of electrostatically generated charges into an IC, is one of the most important reliability problems for ultra-scaled devices. This electrostatic charge can generate voltages of up to tens of kilovolts. These very high voltages can generate very high electric fields and currents across semiconductor devices, which may result in dielectric damage or melting of semiconductors and contacts. It has been reported that up to 70% of IC failures are caused by ESD. Therefore, it’s necessary to design a protection circuit for each pin that discharges the ESD energy to the ground. As the devices are continuously scaling down, while ESD energy remains the same, they become more vulnerable to ESD stress. This higher susceptibility to ESD damage is due to thinner gate oxides and shallower junctions. Furthermore, higher operating frequency of the scaled technologies enforces lower parasitic capacitance of the ESD protection circuits. As a result, increasing the robustness of the ESD protection circuits with minimum additional parasitic capacitance is the main challenge in state of the art CMOS processes. Providing a complete ESD immunity for any circuit involves the design of proper protection circuits for I/O pins in addition to an ESD clamp between power supply pins. In this research both of these aspects are investigated and optimized solutions for them are reported. As Silicon Controlled Rectifier (SCR) has the highest ESD protection level per unit area, ESD protection for I/O pins is provided by optimizing the first breakdown voltage and latch-up immunity of SCR family devices. The triggering voltage of SCR is reduced by a new implementation of gate-substrate triggering technique. Furthermore, a new device based on SCR with internal darlington pair is introduced that can provide ESD protection with very small parasitic capacitance. Besides reducing triggering voltage, latch-up immunity of SCR devices is improved using two novel techniques to increase the holding voltage and the holding current. ESD protection between power rails is provided with transient clamps in which the triggering circuit keeps the clamp “on” during the ESD event. In this research, two new clamps are reported that enhance the triggering circuit of the clamp. The first method uses a CMOS thyristor element to provide enough delay time while the second method uses a flip flop to latch the clamp into “on” state at the ESD event. Moreover, the stability of transient clamps is analyzed and it’s been shown that the two proposed clamps have the highest stability compared to other state of the art ESD clamps. Finally, in order to investigate the impact of ESD protection circuits on high speed applications a current mode logic (CML) driver is designed in 0.13μm CMOS technology. The protection for this driver is provided using both MOS-based and SCR-based protection methods. Measurement results show that, compared to MOS-based protection, SCR-based protection has less impact on the driver performance due to its lower parasitic capacitance
    corecore