4 research outputs found

    Advanced Message Routing for Scalable Distributed Simulations

    Get PDF
    The Joint Forces Command (JFCOM) Experimentation Directorate (J9)'s recent Joint Urban Operations (JUO) experiments have demonstrated the viability of Forces Modeling and Simulation in a distributed environment. The JSAF application suite, combined with the RTI-s communications system, provides the ability to run distributed simulations with sites located across the United States, from Norfolk, Virginia to Maui, Hawaii. Interest-aware routers are essential for communications in the large, distributed environments, and the current RTI-s framework provides such routers connected in a straightforward tree topology. This approach is successful for small to medium sized simulations, but faces a number of significant limitations for very large simulations over high-latency, wide area networks. In particular, traffic is forced through a single site, drastically increasing distances messages must travel to sites not near the top of the tree. Aggregate bandwidth is limited to the bandwidth of the site hosting the top router, and failures in the upper levels of the router tree can result in widespread communications losses throughout the system. To resolve these issues, this work extends the RTI-s software router infrastructure to accommodate more sophisticated, general router topologies, including both the existing tree framework and a new generalization of the fully connected mesh topologies used in the SF Express ModSAF simulations of 100K fully interacting vehicles. The new software router objects incorporate the scalable features of the SF Express design, while optionally using low-level RTI-s objects to perform actual site-to-site communications. The (substantial) limitations of the original mesh router formalism have been eliminated, allowing fully dynamic operations. The mesh topology capabilities allow aggregate bandwidth and site-to-site latencies to match actual network performance. The heavy resource load at the root node can now be distributed across routers at the participating sites

    Distributed and Interactive Simulations Operating at Large Scale for Transcontinental Experimentation

    Get PDF
    This paper addresses the use of emerging technologies to respond to the increasing needs for larger and more sophisticated agent-based simulations of urban areas. The U.S. Joint Forces Command has found it useful to seek out and apply technologies largely developed for academic research in the physical sciences. The use of these techniques in transcontinentally distributed, interactive experimentation has been shown to be effective and stable and the analyses of the data find parallels in the behavioral sciences. The authors relate their decade and a half experience in implementing high performance computing hardware, software and user inter-face architectures. These have enabled heretofore unachievable results. They focus on three advances: the use of general purpose graphics processing units as computing accelerators, the efficiencies derived from implementing interest managed routers in distributed systems, and the benefits of effective data management for the voluminous information

    Simulation Evaluation of the Combat Value of a Standoff Precision Airdrop Capability

    Get PDF
    This project is a simulation evaluation of the developmental standoff precision airdrop (SOPAD) capability. SOPAD is a new technology under consideration to deliver supplies to forward-deployed units using either a semi-rigid wing or a guided parafoil. These delivery systems allow airdrop of supplies from altitudes of 25,000 feet and distances 25 miles from the delivery point. Using global positioning system guidance, on board navigational computers, and automatic steering mechanisms, the delivery system flies to the target following a designated flight plan. The concept includes delivering supplies to remote and potentially hostile areas without endangering the supply aircraft. In addition, supplies can be delivered to multiple locations from a single aircraft. The Air Force\u27s THUNDER model was used to simulate the SOPAD capability and observe the impact in the simulated combat environment. The scenario places a light infantry brigade in a position where supply by ground is prohibited due to terrain limitations and it must hold its position until relief forces are available. The unit must fight for a one-week period being resupplied only through airdrop. The results of the simulation are measured through aircraft attrition, unit strength, forward line of troops movement, and the supplies delivered to the unit

    Scalable RTI-Based Parallel Simulation of Networks

    Get PDF
    ©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the Seventeenth Workshop on Parallel and Distributed Simulation (PADS 03), 2003Federated simulation interfaces such as the High Level Architecture (HLA) were designed for interoperability, and as such are not traditionally associated with high performance computing. In this paper, we present results of a case study examining the use of federated simulations using runtime infrastructure (RTI) software to realize large-scale parallel network simulators. We examine the performance of two different federated network simulators, and describe RTI performance optimizations that were used to achieve efficient execution. We show that RTI-based parallel simulations can scale extremely well and achieve very high speedup. Our experiments yielded more than 80-fold scaled speedup in simulating large TCP/IP networks, demonstrating performance of up to 6 million simulated packet transmissions per second on a Linux cluster. Networks containing up to two million network nodes (routers and end systems) were simulated
    corecore