301 research outputs found

    Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network

    Full text link
    [EN] Nowadays, the Internet of Things (IoT) performs robust services for real-time applications in monitoring communication systems and generating meaningful information. The ZigBee devices offer low latency and manageable costs for wireless communication and support the process of physical data collection. Some biosensing systems comprise IoT-based ZigBee devices to monitor patient healthcare attributes and alert healthcare professionals for needed action. However, most of them still face unstable and frequent data interruption issues due to transmission service intrusions. Moreover, the medical data is publicly available using cloud services, and communicated through the smart devices to specialists for evaluation and disease diagnosis. Therefore, the applicable security analysis is another key factor for any medical system. This work proposed an approach for reliable network supervision with the internet of secured medical things using ZigBee networks for a smart healthcare system (RNM-SC). It aims to improve data systems with manageable congestion through load-balanced devices. Moreover, it also increases security performance in the presence of anomalies and offers data routing using the bidirectional heuristics technique. In addition, it deals with more realistic algorithm to associate only authorized devices and avoid the chances of compromising data. In the end, the communication between cloud and network applications is also protected from hostile actions, and only certified end-users can access the data. The proposed approach was tested and analyzed in Network Simulator (NS-3), and, compared to existing solutions, demonstrated significant and reliable performance improvements in terms of network throughput by 12%, energy consumption by 17%, packet drop ratio by 37%, end-to-end delay by 18%, routing complexity by 37%, and tampered packets by 37%.This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, Saudi Arabia. Authors are thankful for the support.Rehman, A.; Haseeb, K.; Fati, SM.; Lloret, J.; Peñalver Herrero, ML. (2021). Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network. Applied Sciences. 11(21):1-16. https://doi.org/10.3390/app11219947S116112

    A full privacy-preserving distributed batch-based certificate-less aggregate signature authentication scheme for healthcare wearable wireless medical sensor networks (HWMSNs)

    Get PDF
    The dynamic connectivity and functionality of sensors has revolutionized remote monitoring applications thanks to the combination of IoT and wireless sensor networks (WSNs). Wearable wireless medical sensor nodes allow continuous monitoring by amassing physiological data, which is very useful in healthcare applications. These text data are then sent to doctors via IoT devices so they can make an accurate diagnosis as soon as possible. However, the transmission of medical text data is extremely vulnerable to security and privacy assaults due to the open nature of the underlying communication medium. Therefore, a certificate-less aggregation-based signature system has been proposed as a solution to the issue by using elliptic curve public key cryptography (ECC) which allows for a highly effective technique. The cost of computing has been reduced by 93% due to the incorporation of aggregation technology. The communication cost is 400 bits which is a significant reduction when compared with its counterparts. The results of the security analysis show that the scheme is robust against forging, tampering, and man-in-the-middle attacks. The primary innovation is that the time required for signature verification can be reduced by using point addition and aggregation. In addition, it does away with the reliance on a centralized medical server in order to do verification. By taking a distributed approach, it is able to fully preserve user privacy, proving its superiority

    Security and Privacy Preservation in Mobile Crowdsensing

    Get PDF
    Mobile crowdsensing (MCS) is a compelling paradigm that enables a crowd of individuals to cooperatively collect and share data to measure phenomena or record events of common interest using their mobile devices. Pairing with inherent mobility and intelligence, mobile users can collect, produce and upload large amounts of data to service providers based on crowdsensing tasks released by customers, ranging from general information, such as temperature, air quality and traffic condition, to more specialized data, such as recommended places, health condition and voting intentions. Compared with traditional sensor networks, MCS can support large-scale sensing applications, improve sensing data trustworthiness and reduce the cost on deploying expensive hardware or software to acquire high-quality data. Despite the appealing benefits, however, MCS is also confronted with a variety of security and privacy threats, which would impede its rapid development. Due to their own incentives and vulnerabilities of service providers, data security and user privacy are being put at risk. The corruption of sensing reports may directly affect crowdsensing results, and thereby mislead customers to make irrational decisions. Moreover, the content of crowdsensing tasks may expose the intention of customers, and the sensing reports might inadvertently reveal sensitive information about mobile users. Data encryption and anonymization techniques can provide straightforward solutions for data security and user privacy, but there are several issues, which are of significantly importance to make MCS practical. First of all, to enhance data trustworthiness, service providers need to recruit mobile users based on their personal information, such as preferences, mobility pattern and reputation, resulting in the privacy exposure to service providers. Secondly, it is inevitable to have replicate data in crowdsensing reports, which may possess large communication bandwidth, but traditional data encryption makes replicate data detection and deletion challenging. Thirdly, crowdsensed data analysis is essential to generate crowdsensing reports in MCS, but the correctness of crowdsensing results in the absence of malicious mobile users and service providers become a huge concern for customers. Finally yet importantly, even if user privacy is preserved during task allocation and data collection, it may still be exposed during reward distribution. It further discourage mobile users from task participation. In this thesis, we explore the approaches to resolve these challenges in MCS. Based on the architecture of MCS, we conduct our research with the focus on security and privacy protection without sacrificing data quality and users' enthusiasm. Specifically, the main contributions are, i) to enable privacy preservation and task allocation, we propose SPOON, a strong privacy-preserving mobile crowdsensing scheme supporting accurate task allocation. In SPOON, the service provider recruits mobile users based on their locations, and selects proper sensing reports according to their trust levels without invading user privacy. By utilizing the blind signature, sensing tasks are protected and reports are anonymized. In addition, a privacy-preserving credit management mechanism is introduced to achieve decentralized trust management and secure credit proof for mobile users; ii) to improve communication efficiency while guaranteeing data confidentiality, we propose a fog-assisted secure data deduplication scheme, in which a BLS-oblivious pseudo-random function is developed to enable fog nodes to detect and delete replicate data in sensing reports without exposing the content of reports. Considering the privacy leakages of mobile users who report the same data, the blind signature is utilized to hide users' identities, and chameleon hash function is leveraged to achieve contribution claim and reward retrieval for anonymous greedy mobile users; iii) to achieve data statistics with privacy preservation, we propose a privacy-preserving data statistics scheme to achieve end-to-end security and integrity protection, while enabling the aggregation of the collected data from multiple sources. The correctness verification is supported to prevent the corruption of the aggregate results during data transmission based on the homomorphic authenticator and the proxy re-signature. A privacy-preserving verifiable linear statistics mechanism is developed to realize the linear aggregation of multiple crowdsensed data from a same device and the verification on the correctness of aggregate results; and iv) to encourage mobile users to participating in sensing tasks, we propose a dual-anonymous reward distribution scheme to offer the incentive for mobile users and privacy protection for both customers and mobile users in MCS. Based on the dividable cash, a new reward sharing incentive mechanism is developed to encourage mobile users to participating in sensing tasks, and the randomization technique is leveraged to protect the identities of customers and mobile users during reward claim, distribution and deposit

    From Personalized Medicine to Population Health: A Survey of mHealth Sensing Techniques

    Full text link
    Mobile Sensing Apps have been widely used as a practical approach to collect behavioral and health-related information from individuals and provide timely intervention to promote health and well-beings, such as mental health and chronic cares. As the objectives of mobile sensing could be either \emph{(a) personalized medicine for individuals} or \emph{(b) public health for populations}, in this work we review the design of these mobile sensing apps, and propose to categorize the design of these apps/systems in two paradigms -- \emph{(i) Personal Sensing} and \emph{(ii) Crowd Sensing} paradigms. While both sensing paradigms might incorporate with common ubiquitous sensing technologies, such as wearable sensors, mobility monitoring, mobile data offloading, and/or cloud-based data analytics to collect and process sensing data from individuals, we present a novel taxonomy system with two major components that can specify and classify apps/systems from aspects of the life-cycle of mHealth Sensing: \emph{(1) Sensing Task Creation \& Participation}, \emph{(2) Health Surveillance \& Data Collection}, and \emph{(3) Data Analysis \& Knowledge Discovery}. With respect to different goals of the two paradigms, this work systematically reviews this field, and summarizes the design of typical apps/systems in the view of the configurations and interactions between these two components. In addition to summarization, the proposed taxonomy system also helps figure out the potential directions of mobile sensing for health from both personalized medicines and population health perspectives.Comment: Submitted to a journal for revie

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Secure data sharing in cloud computing: a comprehensive review

    Get PDF
    Cloud Computing is an emerging technology, which relies on sharing computing resources. Sharing of data in the group is not secure as the cloud provider cannot be trusted. The fundamental difficulties in distributed computing of cloud suppliers is Data Security, Sharing, Resource scheduling and Energy consumption. Key-Aggregate cryptosystem used to secure private/public data in the cloud. This key is consistent size aggregate for adaptable decisions of ciphertext in cloud storage. Virtual Machines (VMs) provisioning is effectively empowered the cloud suppliers to effectively use their accessible resources and get higher benefits. The most effective method to share information resources among the individuals from the group in distributed storage is secure, flexible and efficient. Any data stored in different cloud data centers are corrupted, recovery using regenerative coding. Security is provided many techniques like Forward security, backward security, Key-Aggregate cryptosystem, Encryption and Re-encryption etc. The energy is reduced using Energy-Efficient Virtual Machines Scheduling in Multi-Tenant Data Centers
    • …
    corecore