16 research outputs found

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented

    Evolutionary algorithms for synthesis and optimisation of sequential logic circuits

    Get PDF
    Considerable progress has been made recently 1n the understanding of combinational logic optimization. Consequently a large number of university and industrial Electric Computing Aided Design (ECAD) programs are now available for optimal logic synthesis of combinational circuits. The progress with sequential logic synthesis and optimization, on the other hand, is considerably less mature. In recent years, evolutionary algorithms have been found to be remarkably effective way of using computers for solving difficult problems. This thesis is, in large part, a concentrated effort to apply this philosophy to the synthesis and optimization of sequential circuits. A state assignment based on the use of a Genetic Algorithm (GA) for the optimal synthesis of sequential circuits is presented. The state assignment determines the structure of the sequential circuit realizing the state machine and therefore its area and performances. The synthesis based on the GA approach produced designs with the smallest area to date. Test results on standard fmite state machine (FS:M) benchmarks show that the GA could generate state assignments, which required on average 15.44% fewer gates and 13.47% fewer literals compared with alternative techniques. Hardware evolution is performed through a succeSSlOn of changes/reconfigurations of elementary components, inter-connectivity and selection of the fittest configurations until the target functionality is reached. The thesis presents new approaches, which combine both genetic algorithm for state assignment and extrinsic Evolvable Hardware (EHW) to design sequential logic circuits. The implemented evolutionary algorithms are able to design logic circuits with size and complexity, which have not been demonstrated in published work. There are still plenty of opportunities to develop this new line of research for the synthesis, optimization and test of novel digital, analogue and mixed circuits. This should lead to a new generation of Electronic Design Automation tools.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Evolutionary algorithms for synthesis and optimisation of sequential logic circuits.

    Get PDF
    Considerable progress has been made recently 1n the understanding ofcombinational logic optimization. Consequently a large number of universityand industrial Electric Computing Aided Design (ECAD) programs are nowavailable for optimal logic synthesis of combinational circuits. The progresswith sequential logic synthesis and optimization, on the other hand, isconsiderably less mature.In recent years, evolutionary algorithms have been found to be remarkablyeffective way of using computers for solving difficult problems. This thesis is,in large part, a concentrated effort to apply this philosophy to the synthesisand optimization of sequential circuits.A state assignment based on the use of a Genetic Algorithm (GA) for theoptimal synthesis of sequential circuits is presented. The state assignmentdetermines the structure of the sequential circuit realizing the state machineand therefore its area and performances. The synthesis based on the GAapproach produced designs with the smallest area to date. Test results onstandard fmite state machine (FS:M) benchmarks show that the GA couldgenerate state assignments, which required on average 15.44% fewer gatesand 13.47% fewer literals compared with alternative techniques.Hardware evolution is performed through a succeSSlOn ofchanges/reconfigurations of elementary components, inter-connectivity andselection of the fittest configurations until the target functionality is reached.The thesis presents new approaches, which combine both genetic algorithmfor state assignment and extrinsic Evolvable Hardware (EHW) to designsequential logic circuits. The implemented evolutionary algorithms are able todesign logic circuits with size and complexity, which have not beendemonstrated in published work.There are still plenty of opportunities to develop this new line of research forthe synthesis, optimization and test of novel digital, analogue and mixedcircuits. This should lead to a new generation of Electronic DesignAutomation tools

    FieldPlacer - A flexible, fast and unconstrained force-directed placement method for heterogeneous reconfigurable logic architectures

    Get PDF
    The field of placement methods for components of integrated circuits, especially in the domain of reconfigurable chip architectures, is mainly dominated by a handful of concepts. While some of these are easy to apply but difficult to adapt to new situations, others are more flexible but rather complex to realize. This work presents the FieldPlacer framework, a flexible, fast and unconstrained force-directed placement method for heterogeneous reconfigurable logic architectures, in particular for the ever important heterogeneous FPGAs. In contrast to many other force-directed placers, this approach is called ‘unconstrained’ as it does not require a priori fixed logic elements in order to calculate a force equilibrium as the solution to a system of equations. Instead, it is based on a free spring embedder simulation of a graph representation which includes all logic block types of a design simultaneously. The FieldPlacer framework offers a huge amount of flexibility in applying different distance norms (e. g., the Manhattan distance) for the force-directed layout and aims at creating adapted layouts for various objective functions, e. g., highest performance or improved routability. Depending on the individual situation, a runtime-quality trade-off can be considered to either produce a decent placement in a very short time or to generate an exceptionally good placement, which takes longer. An extensive comparison with the latest simulated annealing placement method from the well-known Versatile Place and Route (VPR) framework shows that the FieldPlacer approach can create placements of comparable quality much faster than VPR or, alternatively, generate better placements in the same time. The flexibility in defining arbitrary objective functions and the intuitive adaptability of the method, which, among others, includes different concepts from the field of graph drawing, should facilitate further developments with this framework, e. g., for new upcoming optimization targets like the energy consumption of an implemented design

    A Large Scale, Flip-Flop RAM imitating a logic LSI for fast development of process technology

    No full text

    An investigation into the correlation between English sound formation and signification.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Durban, 1996.No abstract available

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book
    corecore