843 research outputs found

    Barrel Shifter Physical Unclonable Function Based Encryption

    Full text link
    Physical Unclonable Functions (PUFs) are circuits designed to extract physical randomness from the underlying circuit. This randomness depends on the manufacturing process. It differs for each device enabling chip-level authentication and key generation applications. We present a protocol utilizing a PUF for secure data transmission. Parties each have a PUF used for encryption and decryption; this is facilitated by constraining the PUF to be commutative. This framework is evaluated with a primitive permutation network - a barrel shifter. Physical randomness is derived from the delay of different shift paths. Barrel shifter (BS) PUF captures the delay of different shift paths. This delay is entangled with message bits before they are sent across an insecure channel. BS-PUF is implemented using transmission gates; their characteristics ensure same-chip reproducibility, a necessary property of PUFs. Post-layout simulations of a common centroid layout 8-level barrel shifter in 0.13 {\mu}m technology assess uniqueness, stability and randomness properties. BS-PUFs pass all selected NIST statistical randomness tests. Stability similar to Ring Oscillator (RO) PUFs under environment variation is shown. Logistic regression of 100,000 plaintext-ciphertext pairs (PCPs) failed to successfully model BS- PUF behavior

    Compact Field Programmable Gate Array Based Physical Unclonable Functions Circuits

    Get PDF
    The Physical Unclonable Functions (PUFs) is a candidate to provide a secure solid root source for identification and authentication applications. It is precious for FPGA-based systems, as FPGA designs are vulnerable to IP thefts and cloning. Ideally, the PUFs should have strong random variations from one chip to another, and thus each PUF is unique and hard to replicate. Also, the PUFs should be stable over time so that the same challenge bits always yield the same result. Correspondingly, one of the major challenges for FPGA-based PUFs is the difficulty of avoiding systematic bias in the integrated circuits but also pulling out consistent characteristics as the PUF at the same time. This thesis discusses several compact PUF structures relying on programmable delay lines (PDLs) and our novel intertwined programmable delays (IPD). We explore the strategy to extract the genuinely random PUF from these structures by minimizing the systematic biases. Yet, our methods still maintain very high reliability. Furthermore, our proposed designs, especially the TERO-based PUFs, show promising resilience to machine learning (ML) attacks. We also suggest the bit-bias metric to estimate PUF’s complexity quickly

    A PUF based on transient effect ring oscillator and insensitive to locking phenomenon

    No full text
    International audienceThis paper presents a new silicon physical unclonable function (PUF) based on a transient effect ring oscillator (TERO). The proposed PUF has state of the art PUF characteristics with a good ratio of PUF response variability to response length. Unlike RO-PUF, it is not sensitive to the locking phenomenon, which challenges the use of ring oscillators for the design of both PUF and TRNG. The novel architecture using differential structures guarantees high stability of the TERO-PUF. The area of the TERO-PUF is relatively high, but is still comparable with other PUF designs. However, since the same piece of hardware can be used for both PUF and random number generation, the proposed principle offers an interesting low area mixed solution
    • …
    corecore