187,383 research outputs found

    Processor Microarchitecture for Implementation of Ephemeral State Processing within Network Routers

    Get PDF
    The evolving concept of Ephemeral State Processing (ESP) is overviewed. ESP allows development of new scalable end-to-end network user services. An evolving macro-level language is being developed to support ESP at the network node level. Three approaches for implementing ESP services at network routers can be considered. One approach is to use the existing processing capability within commercially available network routers. Another approach is to add a small scale existing ASIC based general-purpose processor to an existing network router. This thesis research concentrates on a third approach of developing a special-purpose programmable Ephemeral State Processor (ESPR) Instruction Set Architecture (ISA) and implementing microarchitecture for deployment within each ESP-capable node to implement ESP service within that node. A unique architectural characteristic of the ESPR is its scalable and temporal Ephemeral State Store (ESS) associative memory, required by the ESP service for storage/retrieval of bounded (short) lifetime ephemeral (tag, value) pairs of application data. The ESPR will be implemented to Programmable Logic Device (PLD) technology within a network node. This offers advantages of reconfigurability, in-field upgrade capability and supports the evolving growth of ESP services. Correct functional and performance operation of the presented ESPR microarchitecture is validated via Hardware Description Language (HDL) post-implementation (virtual prototype) simulation testing. Suggestions of future research related to improving the performance of the ESPR rnicroarchitecture and experimental deployment of ESP are discussed

    A conceptual architecture for semantic web services development and deployment

    Get PDF
    Several extensions of the Web Services Framework (WSF) have been proposed. The combination with Semantic Web technologies introduces a notion of semantics, which can enhance scalability through automation. Service composition to processes is an equally important issue. Ontology technology – the core of the Semantic Web – can be the central building block of an extension endeavour. We present a conceptual architecture for ontology-based Web service development and deployment. The development of service-based software systems within the WSF is gaining increasing importance. We show how ontologies can integrate models, languages, infrastructure, and activities within this architecture to support reuse and composition of semantic Web services

    A Change Execution System for Enterprise Services with Compensation Support

    Full text link
    Modern enterprises rely on a distributed IT infrastructure to execute their business processes, adopting Service Oriented Architectures in order to improve the flexibility and ease of adaptation of their functions. Nowadays this is a vital characteristic, as the increased competition forces companies to continuously evolve and adapt. SOA applications must be supported by management and deployment systems, which have to continuously apply modifications to the distributed infrastructure. This article presents a modelbased solution for automatically applying change plans to heterogeneous enterprise managed environments. The proposed solution uses models which describe in an abstract language the changes that need to be applied to the environment, and executes all the required operations to the specific managed elements. Also, to ensure that the environment ends in a stable state, compensation for previously executed operations is supported. The validation results from a case study taken from the banking domain are also presented here

    Enabling High-Level Application Development for the Internet of Things

    Get PDF
    Application development in the Internet of Things (IoT) is challenging because it involves dealing with a wide range of related issues such as lack of separation of concerns, and lack of high-level of abstractions to address both the large scale and heterogeneity. Moreover, stakeholders involved in the application development have to address issues that can be attributed to different life-cycles phases. when developing applications. First, the application logic has to be analyzed and then separated into a set of distributed tasks for an underlying network. Then, the tasks have to be implemented for the specific hardware. Apart from handling these issues, they have to deal with other aspects of life-cycle such as changes in application requirements and deployed devices. Several approaches have been proposed in the closely related fields of wireless sensor network, ubiquitous and pervasive computing, and software engineering in general to address the above challenges. However, existing approaches only cover limited subsets of the above mentioned challenges when applied to the IoT. This paper proposes an integrated approach for addressing the above mentioned challenges. The main contributions of this paper are: (1) a development methodology that separates IoT application development into different concerns and provides a conceptual framework to develop an application, (2) a development framework that implements the development methodology to support actions of stakeholders. The development framework provides a set of modeling languages to specify each development concern and abstracts the scale and heterogeneity related complexity. It integrates code generation, task-mapping, and linking techniques to provide automation. Code generation supports the application development phase by producing a programming framework that allows stakeholders to focus on the application logic, while our mapping and linking techniques together support the deployment phase by producing device-specific code to result in a distributed system collaboratively hosted by individual devices. Our evaluation based on two realistic scenarios shows that the use of our approach improves the productivity of stakeholders involved in the application development

    A Generic Deployment Framework for Grid Computing and Distributed Applications

    Get PDF
    Deployment of distributed applications on large systems, and especially on grid infrastructures, becomes a more and more complex task. Grid users spend a lot of time to prepare, install and configure middleware and application binaries on nodes, and eventually start their applications. The problem is that the deployment process is composed of many heterogeneous tasks that have to be orchestrated in a specific correct order. As a consequence, the automatization of the deployment process is currently very difficult to reach. To address this problem, we propose in this paper a generic deployment framework allowing to automatize the execution of heterogeneous tasks composing the whole deployment process. Our approach is based on a reification as software components of all required deployment mechanisms or existing tools. Grid users only have to describe the configuration to deploy in a simple natural language instead of programming or scripting how the deployment process is executed. As a toy example, this framework is used to deploy CORBA component-based applications and OpenCCM middleware on one thousand nodes of the French Grid5000 infrastructure.Comment: The original publication is available at http://www.springerlink.co

    Challenges for the comprehensive management of cloud services in a PaaS framework

    Full text link
    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies

    Dynamic Model-based Management of Service-Oriented Infrastructure.

    Get PDF
    Models are an effective tool for systems and software design. They allow software architects to abstract from the non-relevant details. Those qualities are also useful for the technical management of networks, systems and software, such as those that compose service oriented architectures. Models can provide a set of well-defined abstractions over the distributed heterogeneous service infrastructure that enable its automated management. We propose to use the managed system as a source of dynamically generated runtime models, and decompose management processes into a composition of model transformations. We have created an autonomic service deployment and configuration architecture that obtains, analyzes, and transforms system models to apply the required actions, while being oblivious to the low-level details. An instrumentation layer automatically builds these models and interprets the planned management actions to the system. We illustrate these concepts with a distributed service update operation
    • 

    corecore