2,458 research outputs found

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity networkā€”the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ā€˜open networksā€™, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    On Holistic Multi-Step Cyberattack Detection via a Graph-based Correlation Approach

    Full text link
    While digitization of distribution grids through information and communications technology brings numerous benefits, it also increases the grid's vulnerability to serious cyber attacks. Unlike conventional systems, attacks on many industrial control systems such as power grids often occur in multiple stages, with the attacker taking several steps at once to achieve its goal. Detection mechanisms with situational awareness are needed to detect orchestrated attack steps as part of a coherent attack campaign. To provide a foundation for detection and prevention of such attacks, this paper addresses the detection of multi-stage cyber attacks with the aid of a graph-based cyber intelligence database and alert correlation approach. Specifically, we propose an approach to detect multi-stage attacks by leveraging heterogeneous data to form a knowledge base and employ a model-based correlation approach on the generated alerts to identify multi-stage cyber attack sequences taking place in the network. We investigate the detection quality of the proposed approach by using a case study of a multi-stage cyber attack campaign in a future-orientated power grid pilot.Comment: IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) 202

    A Bayesian Network Approach for the Interpretation of Cyber Attacks to Power Systems

    Get PDF
    The focus of this paper is on the analysis of the cyber security resilience of digital infrastructures deployed by power grids, internationally recognized as a priority since several recent cyber attacks targeted energy systems and in particular the power service. In response to the regulatory framework, this paper presents an analysis approach based on the Bayesian Networks formalism and on real world threat scenarios. Our approach enables analyses oriented to planning of security measures and monitoring, and to forecasting of adversarial behaviours

    Towards Cybersecurity by Design: A multi-level reference model for requirements-driven smart grid cybersecurity

    Get PDF
    This paper provides a first step towards a reference model for end-to-end cybersecurity by design in the electricity sector. The envisioned reference model relies, among others, on the integrated consideration of two currently fragmented, but complementary, reference models: NISTIR 7628 and powerLang. As an underlying language architecture of choice, we rely on multi-level modeling, specifically on the Flexible Meta Modeling and Execution Language (FMMLx), as multi-level modeling supports a natural integration across different abstraction levels inherent to reference models. This paperā€™s contributions are a result of one full consideration of Wieringaā€™s engineering cycle: for problem investigation, we describe the problems the reference model should address; for treatment design, we contribute the requirements the reference model should fulfill; for treatment implementation, we provide reference modelā€™s fragments implemented in an integrated modeling and programming environment. Finally, for treatment evaluation, we perform expert interviews to check, among others, the artefactā€™s relevance and utility

    Ontology-based Approach for Malicious Behaviour Detection in Synchrophasor Networks

    Get PDF
    • ā€¦
    corecore