38,254 research outputs found

    Improving Airport Runway Braking Analysis through Innovative Modeling

    Get PDF
    Landing excursion accidents have become a major concern over recent decades regarding airline and airport safety. Available runway friction has a significant impact on aircraft landing performance. This is especially noted when aircraft are landing on wet or otherwise contaminated runways due to the reduced braking action, which has been well documented since the dawn of the jet aircraft age. The objective of this thesis is to develop a tool to help make recommendations for airports that are subjected to diverse weather conditions. In order to model an aircraft’s real landing performance, a mechanistic-empirical aircraft deceleration equation was developed. This equation contains all of the major forces that contribute to aircraft braking, and is calibrated and validated using digital flight data from dry runway aircraft landings. Digital flight data from a Boeing 737-700, runway pavement condition monitoring data, and weather data was collected. Finally, a Boeing 737-700 case study was conducted. As a result, it is able to back calculate the braking friction coefficient from the developed equation and evaluate the impact of wet and contaminated runways on aircraft braking performance. A study of a Boeing 737-700 aircraft landing performance on runways under different conditions was conducted. A mechanistic-empirical landing distance model is established based on the mechanistic-empirical deceleration equation, in order to accurately calculate the required landing distance. When developing the landing distance model, the following characteristics are considered: pilot settings (TLA, spoiler position, and flap position configurations), aircraft operational characteristics (touchdown speed and weight), the runway friction condition, and aircraft braking system characteristics. A Boeing 737-700 real data case study was conducted and a comparison was made with the Boeing 737 Quick Reference Handbook reference landing distance. The results indicate the model offers an accurate prediction of aircraft landing distance. Finally, future applications of this thesis are introduced. The potential of the development of a runway assessment, evaluation, and reporting framework was proposed. Opportunities of applying this thesis in on-board landing distance calculation, quick exit taxiway design and airport operation optimization, and fuel consumption reduction were presented. Moreover, the development of the Braking Availability Tester was discussed

    A macroscopic performance analysis of NASA’s northrop grumman RQ-4A

    Get PDF
    This work was partially funded by the Ministerio de Economia y Competitividad of Spain under Contract TRA2016-77012-R and by EUROCONTROL acting on behalf of the SESAR Joint Undertaking (the SJU) and the European Union as part of Work Package E in the SESAR ProgrammeThis paper presents the process of identification, from a macroscopic point of view, of the Northrop Grumman RQ-4A Global Hawk Remote-Piloted Aircraft System from real, but limited flight information. Performance parameters and operational schemes will be extracted by analyzing available data from two specific science flights flown by the Global Hawk back in 2010. Each phase of the flight, take-off, climb, cruise climb, descent and landing, is analyzed from various points of view: speed profile, altitude, climb/descent ratios and rate of turn. The key performance parameters derived from individual flights will be confirmed by performing a wider statistical validation with additional flight trajectories. Derived data are exploited to validate a simulated RQ-4A vehicle employed in extensive real-time air traffic management simulated integration exercises and to complement the development of a future RQ-4A trajectory predictor.Peer ReviewedPostprint (published version

    Redundant actuator development program

    Get PDF
    Two concepts of redundant secondary actuator mechanization, applicable to future advanced flight control systems, were studied to quantitatively assess their design applicability to an AST. The two actuator concepts, a four-channel, force summed system and a three-channel, active/standby system have been developed and evaluated through analysis, analog computer simulation, and piloted motion simulation. The quantitative comparison of the two concepts indicates that the force summed concept better meet performance requirements, although the active/standby is superior in other respects. Both concepts are viable candidates for advanced control application dependent on the specific performance requirements

    Aeronautical Engineering: A special bibliography with indexes, supplement 48

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1974

    The Manual Flight Skill of Airline Pilots

    Get PDF
    The manual flight ability of commercial airline pilots has been scrutinized after several aviation disasters in the first decade of the 21st century where pilot error has been a contributing cause. Voluntary pilot incident reports from the National Aeronautics and Space Administration\u27s Aviation Safety Reporting System (ASRS) were examined as one method to determine the prevalence of manual flight skill decline among airline pilots. The investigation studied reports from unstabilized approach to landings where the pilots manually controlled the aircraft during descent. An analysis of the ASRS reports from pilots flying traditional flight deck aircraft compared with pilots flying aircraft with advanced technology flight decks revealed no significant difference in unstabilized approaches. Two additional analyses comparing ASRS reports from regional air carriers versus major air carriers as well as international operations and domestic operations from major air carriers, determined no significant differences in unstabilized approaches. The research indicates that ASRS voluntary incident reports cannot determine significant differences in airline pilot manual flight control between different airline operation types or flight deck technologies

    Aeronautical Engineering: A special bibliography with indexes, supplement 55

    Get PDF
    This bibliography lists 260 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1975

    A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 2: Flight evaluations

    Get PDF
    Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system

    Time and Energy Managed Operations (TEMO): Cessna Citation II Flight Trials

    Get PDF
    From 9-26 October 2015 the Netherlands Aerospace Centre (NLR) in cooperation with Delft University of Technology (DUT) has executed Clean Sky flight trials with the Cessna Citation II research aircraft. The trials consisted of several descents and approaches at the Eelde airport near Groningen, demonstrating the TEMO (Time and Energy Managed Operations) concept developed in the Clean Sky Joint Technology Initiative research programme as part of the Systems for Green Operations (SGO) Integrated Technology Demonstrator. A TEMO descent aims to achieve an energy-managed idle-thrust continuous descent operation (CDO) while satisfying ATC time constraints, to maintain runway throughput. An optimal descent plan is calculated with an advanced on-board real-time aircraft trajectory optimisation algorithm considering forecasted weather and aircraft performance. The optimised descent plan was executed using the speed-on-elevator mode of an experimental Fly-By-Wire (FBW) system connected to the pitch servo motor of the Cessna Citation II aircraft. Several TEMO conceptual variants have been flown. It has been demonstrated that the TEMO concept enables arrival with timing errors below 10 seconds. The project was realised with the support of CONCORDE partners Universitat Politècnica de Catalunya (UPC) and PildoLabs from Barcelona, and the Royal Netherlands Meteorological Institute (KNMI).Peer ReviewedPostprint (published version

    Development and flight test of a helicopter compact, portable, precision landing system concept

    Get PDF
    An airborne, radar-based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder-based beacon landing system (BLS) applying state-of-the-art X-band radar technology and digital processing techniques, was built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add-on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide-slope deviation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas

    Aeronautical Engineering: A special bibliography, supplement 60

    Get PDF
    This bibliography lists 284 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1975
    • …
    corecore