9,150 research outputs found

    Stability of Uncertainty Piecewise Affine Time-Delay Systems with Application to All Wheel Drive Clutch Control.

    Full text link
    Piecewise affine (PWA) systems provide good flexibility and traceability for modeling a variety of nonlinear systems. The stability of PWA systems is an important but challenging problem since the stability of the sub-systems does not directly imply the stability of the global system. Meanwhile, time delays and uncertainty exist in many practical systems in engineering and introduce various complex behaviors such as oscillation, instability and poor performance. To ensure the stability of the practical control systems developed via the PWA system framework, the stability of uncertain PWA time-delay systems is investigated. In addition, a quantitative description of asymptotic behavior for time-delay systems is also studied. First, the stability problem for uncertain piecewise affine time-delay systems is investigated. It is assumed that there exists a constant time delay in the system and the uncertainly is norm-bounded. Sufficient conditions for the stability of nominal systems and the stability of systems subject to uncertainty are derived using the Lyapunov-Krasovskii functional with a triple integration term. This approach handles switching based on the delayed states (in addition to the states) for a PWA time-delay system, considers structured as well as unstructured uncertainty, and reduces the conservativeness of previous approaches. Second, an application of the PWA system framework to the modeling and control of an automotive all wheel drive clutch system is presented. The open-loop system is modeled as a PWA system, followed by the design of a piecewise linear feedback controller. The stability of the closed-loop system is examined using the proposed stability method. Finally, a new Lambert W function based approach for estimation of the decay function for time-delay systems is presented. Using this solution form, a decay function estimate, which is less conservative than existing methods, is obtained.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86297/1/duansm_1.pd

    Some Special Cases in the Stability Analysis of Multi-Dimensional Time-Delay Systems Using The Matrix Lambert W function

    Full text link
    This paper revisits a recently developed methodology based on the matrix Lambert W function for the stability analysis of linear time invariant, time delay systems. By studying a particular, yet common, second order system, we show that in general there is no one to one correspondence between the branches of the matrix Lambert W function and the characteristic roots of the system. Furthermore, it is shown that under mild conditions only two branches suffice to find the complete spectrum of the system, and that the principal branch can be used to find several roots, and not the dominant root only, as stated in previous works. The results are first presented analytically, and then verified by numerical experiments

    On the Positive Effect of Delay on the Rate of Convergence of a Class of Linear Time-Delayed Systems

    Full text link
    This paper is a comprehensive study of a long observed phenomenon of increase in the stability margin and so the rate of convergence of a class of linear systems due to time delay. We use Lambert W function to determine (a) in what systems the delay can lead to increase in the rate of convergence, (b) the exact range of time delay for which the rate of convergence is greater than that of the delay free system, and (c) an estimate on the value of the delay that leads to the maximum rate of convergence. For the special case when the system matrix eigenvalues are all negative real numbers, we expand our results to show that the rate of convergence in the presence of delay depends only on the eigenvalues with minimum and maximum real parts. Moreover, we determine the exact value of the maximum rate of convergence and the corresponding maximizing time delay. We demonstrate our results through a numerical example on the practical application in accelerating an agreement algorithm for networked~systems by use of a delayed feedback

    On Robustness Analysis of a Dynamic Average Consensus Algorithm to Communication Delay

    Full text link
    This paper studies the robustness of a dynamic average consensus algorithm to communication delay over strongly connected and weight-balanced (SCWB) digraphs. Under delay-free communication, the algorithm of interest achieves a practical asymptotic tracking of the dynamic average of the time-varying agents' reference signals. For this algorithm, in both its continuous-time and discrete-time implementations, we characterize the admissible communication delay range and study the effect of the delay on the rate of convergence and the tracking error bound. Our study also includes establishing a relationship between the admissible delay bound and the maximum degree of the SCWB digraphs. We also show that for delays in the admissible bound, for static signals the algorithms achieve perfect tracking. Moreover, when the interaction topology is a connected undirected graph, we show that the discrete-time implementation is guaranteed to tolerate at least one step delay. Simulations demonstrate our results

    Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results

    Get PDF
    In recent decades, increasingly intensive research attention has been given to dynamical systems containing delays and those affected by the after-effect phenomenon. Such research covers a wide range of human activities and the solutions of related engineering problems often require interdisciplinary cooperation. The knowledge of the spectrum of these so-called time-delay systems (TDSs) is very crucial for the analysis of their dynamical properties, especially stability, periodicity, and dumping effect. A great volume of mathematical methods and techniques to analyze the spectrum of the TDSs have been developed and further applied in the most recent times. Although a broad family of nonlinear, stochastic, sampled-data, time-variant or time-varying-delay systems has been considered, the study of the most fundamental continuous linear time-invariant (LTI) TDSs with fixed delays is still the dominant research direction with ever-increasing new results and novel applications. This paper is primarily aimed at a (systematic) literature overview of recent (mostly published between 2013 to 2017) advances regarding the spectrum analysis of the LTI-TDSs. Specifically, a total of 137 collected articles-which are most closely related to the research area-are eventually reviewed. There are two main objectives of this review paper: First, to provide the reader with a detailed literature survey on the selected recent results on the topic and Second, to suggest possible future research directions to be tackled by scientists and engineers in the field. © 2013 IEEE.MSMT-7778/2014, FEDER, European Regional Development Fund; LO1303, FEDER, European Regional Development Fund; CZ.1.05/2.1.00/19.0376, FEDER, European Regional Development FundEuropean Regional Development Fund through the Project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; National Sustainability Program Project [LO1303 (MSMT-7778/2014)

    Modified Beer-Lambert law for blood flow

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOThe modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.9319123FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2012/02500-8; 2013/07559-311. Conference on Optical Tomography and Spectroscopy of Tissue9 a 11 de Fevereiro de 2015San Francisco, CASPIE - International Society for Optical EngineeringAgências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig

    Modified Beer-Lambert law for blood flow

    Get PDF
    FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPWe develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.51140534075FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2012/02500-82013/07559-3We gratefully acknowledge help from Marion Knaus and Victoria Pallett per preparing the pig, and we thank longtime collaborators Daniel Licht, John Detre, Emile Mohler, Thomas Floyd, Turgut Durduran, and Theresa Busch for valuable discussions. We acknowledge support from the National Institutes of Health (R01-NS060653, NHLBI-HL007915, 8P41-EB015893), the American Heart Association (ABP, 14POST20460161), the Thrasher Pediatric Research Foundation Early Career Award (DRB), and the Sao Paulo Research Foundation (RCM, 2012/02500-8, 2013/07559-3)

    Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots

    Full text link
    We examine the multiple exciton population dynamics in PbS quantum dots by ultrafast spectrally-resolved supercontinuum transient absorption (SC-TA). We simultaneously probe the first three excitonic transitions over a broad spectral range. Transient spectra show the presence of first order bleach of absorption for the 1S_h-1S_e transition and second order bleach along with photoinduced absorption band for 1P_h-1P_e transition. We also report evidence of the one-photon forbidden 1S_{h,e}-1P_{h,e} transition. We examine signatures of carrier multiplication (multiexcitons for the single absorbed photon) from analysis of the first and second order bleaches, in the limit of low absorbed photon numbers (~ 10^-2), at pump energies from two to four times the semiconductor band gap. The multiexciton generation efficiency is discussed both in terms of a broadband global fit and the ratio between early- to long-time transient absorption signals.. Analysis of population dynamics shows that the bleach peak due to the biexciton population is red-shifted respect the single exciton one, indicating a positive binding energy.Comment: 16 pages, 5 figure
    • …
    corecore