230 research outputs found

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    A bounded degree SOS hierarchy for polynomial optimization

    Full text link
    We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f=min{f(x):xK}(P):\:f^{\ast}=\min \{\,f(x):x\in K\,\} on a compact basic semi-algebraic set KRnK\subset\R^n. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine's positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractive features: (a) In contrast to the standard SOS-hierarchy, for each relaxation in the hierarchy, the size of the matrix associated with the semidefinite constraint is the same and fixed in advance by the user. (b) In contrast to the LP-hierarchy, finite convergence occurs at the first step of the hierarchy for an important class of convex problems. Finally (c) some important techniques related to the use of point evaluations for declaring a polynomial to be zero and to the use of rank-one matrices make an efficient implementation possible. Preliminary results on a sample of non convex problems are encouraging

    Hierarchies of Relaxations for Online Prediction Problems with Evolving Constraints

    Get PDF
    We study online prediction where regret of the algorithm is measured against a benchmark defined via evolving constraints. This framework captures online prediction on graphs, as well as other prediction problems with combinatorial structure. A key aspect here is that finding the optimal benchmark predictor (even in hindsight, given all the data) might be computationally hard due to the combinatorial nature of the constraints. Despite this, we provide polynomial-time \emph{prediction} algorithms that achieve low regret against combinatorial benchmark sets. We do so by building improper learning algorithms based on two ideas that work together. The first is to alleviate part of the computational burden through random playout, and the second is to employ Lasserre semidefinite hierarchies to approximate the resulting integer program. Interestingly, for our prediction algorithms, we only need to compute the values of the semidefinite programs and not the rounded solutions. However, the integrality gap for Lasserre hierarchy \emph{does} enter the generic regret bound in terms of Rademacher complexity of the benchmark set. This establishes a trade-off between the computation time and the regret bound of the algorithm
    corecore