620 research outputs found

    Pore-scale simulation of micro and nanoparticle transport in porous media

    Get PDF
    The transport and deposition of colloidal particles in saturated porous media are processes of considerable importance in many fields of science and engineering, including the propagation of contaminants and of microorganisms in aquifer systems and the use of micro- and nano-particles as reagents for groundwater remediation interventions. Colloid transport is a peculiar multi-scale problem: pore-scale phenomena and inter granular dynamics have an important impact on the larger-scale transport. In this thesis a microscale approach was used to gain a better understanding of the mechanisms underlying colloidal processes, such as deposition and aggregation. The research activity was carried out by performing numerical simulations through the FEM software, COMSOL Multiphysics®. The first part of the study focuses on the development of a new correlation equation to predict single collector efficiency, a key concept in filtration theory, which allows predicting particle deposition on a single spherical collector. By performing Eulerian and Lagrangian simulations in a simple geometry and by using an innovative approach to interpret the results, a new correlation equation to predict single collector efficiency has been formulated. A hierarchical approach to interpret the results was exploited. The proposed correlation equation presents innovative features, such as the validity for a wide range of parameters (also at very small Peclet numbers), the prediction of efficiency values always lower than unity, the total flux normalization and the analysis of the mutual interactions between the main transport mechanisms (advection, gravity and diffusion) and the steric effect. The final formula was also extended to include porosity and a reduced model was proposed. The second part of the study focuses on more realistic systems, characterized by a column of spherical collectors in series. The numerical simulations performed show the limits of the existing models to interpret the experimental data. Therefore, a more rigorous procedure to evaluate the filtration processes in presence of a series of collectors was developed

    Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms

    Get PDF
    In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within different practical applications including aerosol sampling inlet, filtration system and turbulent pipe flows. The objective of the research is to obtain a better understanding of the mechanisms that affect aerosol particle transport and deposition, and to determine the feasibility and accuracy of using commercial CFD tools in predicting performance of aerosol sampling devices. Flow field simulation was carried out first, and then followed by Lagrangian particle tracking to obtain the aerosol transport and deposition information. The CFD-based results were validated with experimental data and empirical correlations. In the simulation of the aerosol inlet, CFD-based penetration was in excellent agreement with experimental results, and the most significant regional particle deposition occurred due to inertial separation. At higher free wind speeds gravity had less effect on particle deposition. An empirical equation for efficiency prediction was developed considering inertial and gravitational effects, which will be useful for directing design of similar aerosol inlets. In the simulation of aerosol deposition on a screen, a "virtual surface" approach, which eliminates the need for the often-ambiguous user defined functions, was developed to account for particle deposition due to interception. The CFD-based results had a good agreement compared with experimental results, and also with published empirical correlations for interception. In the simulation of turbulent deposition in pipe flows, the relation between particle deposition velocity and wall-normal turbulent velocity fluctuation was quantitative determined for the first time, which could be used to quantify turbulent deposition, without having to carry out Lagrangian particle tracking. It suggested that the Reynolds stress model and large eddy simulation would lead to the most accurate simulated aerosol deposition velocity. The prerequisites were that the wall-adjacent y+ value was sufficiently low, and that sufficient number of prism layers was applied in the near-wall region. The "velocity fluctuation convergence" would be useful criterion for judging the adequacy of a CFD simulation for turbulent deposition

    LNG Bunkering Network Design in Inland Waterways

    Get PDF
    Growing awareness of the environment and new regulations of the International Maritime Organization and the European Union are forcing ship-owners to reduce pollution. The use of liquefied natural gas (LNG) is one of the most promising options for achieving a reduction in pollution for inland shipping and short sea shipping. However, the infrastructure to facilitate the broad use of LNG is yet to be developed. We advance and analyze models that suggest LNG infrastructure development plans for refueling stations that support pipeline-to-ship and truck-to-ship bunkering, specifying locations, types, and capacities, and that take into account the characteristics of LNG, such as boil-off during storage and loading. We develop an effective primal heuristic, based on Lagrangian relaxation, for the solution of the models. We validate our approach by performing a computational study for the waterway network in the Arnhem-Nijmegen region in the West-European river network, including, among others, multi-year scenarios in which capacity expansion and reduction are possible

    Fluid dynamics and mass transfer in porous media: Modelling fluid flow and filtration inside open-cell foams

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    KRYTYCZNY PRZEGLĄD MODELI UŻYWANYCH W SYMULACJI NUMERYCZNEJ ELEKTROFILTRÓW

    Get PDF
    The electrostatic precipitators (ESP) have been drawing more and more attention due to their high efficiency and low costs. Numerical simulation is a powerful, economical and flexible tool to design ESP for industry applications. This review summarizes the available numerical models to simulate different physical processes in ESP, including ionized electric field, air flow, particle charging and motion. It has been confirmed that the available models could provide acceptable results and the computing requirements are affordable in industry applications. The coupling between different physical processes can also be considered in simulation. However, there are still some problems not solved, such as selection of a suitable turbulence model in EHD simulation and the coupling criteria. The future study should focus on these issues. This review also includes new types of ESP developed in recent years, such as dielectric barrier discharge (DBD) ESP and corona assisted fibrous filter. These new types of ESP have had high efficiency and low energy consumption. Even though nearly all new ESP types can be modeled using the available numerical models, the most challenging issue is the DBD simulation.Elektrofiltry są obiektem nieustającej uwagi ze względu na ich wysoką sprawność i niski koszt. Symulacja numeryczna jest bardzo skutecznym, ekonomicznym i elastycznym narzędziem przy projektowaniu przemysłowych elektrofiltrów. Ten artykuł podsumowuje dostępne modele numeryczne do symulacji różnych procesów fizycznych występujących w elektrofiltrach, włączając zjonizowane pole elektryczne, przepływ powietrza, ładowanie cząstek i ich trajektorie. Zostało potwierdzone, że dostępne modele mogą dostarczyć zadowalających wyników nawet używając sprzętu komputerowego dostępnego w zastosowaniach przemysłowych. Wzajemne sprzężenia między różnymi procesami fizycznymi mogą być analizowane podczas symulacji. Ciągle istnieją jednak problemy nierozwiązane, na przykład wybór odpowiedniego modelu turbulencji przeplywu gazu albo kryteriów sprzężeń. Przyszłe badania powinny skoncentrować się na ich rozwiązaniu. Ten przegląd omawia też nowe rodzaje elektrofiltrów zaproponowanych w ostatnich latach, na przykład elektrofiltry oparte na wyładowaniach z barierą dielektryczną albo wspomagane wyładowaniem koronowym filtry włókniste. Te nowe typy elektrofiltrów mają wysoką sprawność i niski pobór energii. Jeśli nawet prawie wszystkie nowe typy elektrofiltrów mogą być modelowane z użyciem istniejących modeli numerycznych, najtrudniejsze jest modelowanie wyładowania z barierą dielektryczną

    Modelling ripple morphodynamics driven by colloidal deposition

    Get PDF
    Fluid dynamics between a particle-laden flow and an evolving boundary are found in various contexts. We numerically simulated the morphodynamics of silica particle deposition from flowing water within geothermal heat exchangers using the arbitrary Lagrangian-Eulerian method. The silica particles were of colloidal size, with submicron diameters, which were primarily transported through the water via Brownian motion. First, we validated the Euler-Euler approach for modelling the transport and deposition of these colloidal particles within a fluid by comparing our simulation results with existing experiments of colloidal polystyrene deposition. Then we combined this multiphase model with a dynamic mesh model to track the gradually accumulated silica along the pipe walls of a heat exchanger. Surface roughness was modelled by prescribing sinusoidally-shaped protrusions on the wall boundary. The silica bed height grew quickest at the peaks of the ripples and the spacing between the protrusions remained relatively constant. The rough surface experienced a 20 % reduction in silica deposition when compared to a smooth surface. We also discuss the challenges of mesh deforming simulations with an emphasis on the mesh quality as the geometry changes over time

    Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models

    Get PDF
    Permission to place copies of these works on this server has been provided by the American Meteorological Society (AMS). The AMS does not guarantee that the copies provided here are accurate copies of the published work. © Copyright 2002 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or [email protected] strength of the coupling between the land and the atmosphere, which controls, for example, the degree to which precipitation-induced soil moisture anomalies affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated coupling strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective intermodel comparison of land–atmosphere coupling strength, focusing on short (weekly down to subhourly) timescales. The experiment essentially consists of an ensemble of 1-month simulations in which each member simulation artificially maintains the same (model specific) time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicate the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that coupling strength does indeed vary significantly among the AGCMs

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields
    corecore