6,455 research outputs found

    Teaching telecommunication standards: bridging the gap between theory and practice

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Telecommunication standards have become a reliable mechanism to strengthen collaboration between industry and research institutions to accelerate the evolution of communications systems. Standards are needed to enable cooperation while promoting competition. Within the framework of a standard, the companies involved in the standardization process contribute and agree on appropriate technical specifications to ensure diversity and compatibility, and facilitate worldwide commercial deployment and evolution. Those parts of the system that can create competitive advantages are intentionally left open in the specifications. Such specifications are extensive, complex, and minimalistic. This makes telecommunication standards education a difficult endeavor, but it is much demanded by industry and governments to spur economic growth. This article describes a methodology for teaching wireless communications standards. We define our methodology around six learning stages that assimilate the standardization process and identify key learning objectives for each. Enabled by software-defined radio technology, we describe a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. Using only open source software and commercial of-the-shelf computers, this environment is portable and can easily be recreated at other educational institutions and adapted to their educational needs and constraints. We discuss our and our students' experiences when employing the proposed methodology to 4G LTE standard education at Barcelona Tech.Peer ReviewedPostprint (author's final draft

    FORGE: An eLearning Framework for Remote Laboratory Experimentation on FIRE Testbed Infrastructure

    Get PDF
    The Forging Online Education through FIRE (FORGE) initiative provides educators and learners in higher education with access to world-class FIRE testbed infrastructure. FORGE supports experimentally driven research in an eLearning environment by complementing traditional classroom and online courses with interactive remote laboratory experiments. The project has achieved its objectives by defining and implementing a framework called FORGEBox. This framework offers the methodology, environment, tools and resources to support the creation of HTML-based online educational material capable accessing virtualized and physical FIRE testbed infrastruc- ture easily. FORGEBox also captures valuable quantitative and qualitative learning analytic information using questionnaires and Learning Analytics that can help optimise and support student learning. To date, FORGE has produced courses covering a wide range of networking and communication domains. These are freely available from FORGEBox.eu and have resulted in over 24,000 experiments undertaken by more than 1,800 students across 10 countries worldwide. This work has shown that the use of remote high- performance testbed facilities for hands-on remote experimentation can have a valuable impact on the learning experience for both educators and learners. Additionally, certain challenges in developing FIRE-based courseware have been identified, which has led to a set of recommendations in order to support the use of FIRE facilities for teaching and learning purposes

    Physical Multi-Layer Phantoms for Intra-Body Communications

    Full text link
    This paper presents approaches to creating tissue mimicking materials that can be used as phantoms for evaluating the performance of Body Area Networks (BAN). The main goal of the paper is to describe a methodology to create a repeatable experimental BAN platform that can be customized depending on the BAN scenario under test. Comparisons between different material compositions and percentages are shown, along with the resulting electrical properties of each mixture over the frequency range of interest for intra-body communications; 100 KHz to 100 MHz. Test results on a composite multi-layer sample are presented confirming the efficacy of the proposed methodology. To date, this is the first paper that provides guidance on how to decide on concentration levels of ingredients, depending on the exact frequency range of operation, and the desired matched electrical characteristics (conductivity vs. permittivity), to create multi-layer phantoms for intra-body communication applications

    A Mobile Platform Using Software Defined Radios For Wireless Communication Systems Experimentation

    Get PDF
    A distinctive feature of wireless communication systems is implied by the fact that there is no physical connection between the transmitter and its corresponding receiver, which enables user mobility. However, experimenting with wireless communication systems is mostly done in the lab, where transmitters and receivers are setup on benches, in stationary settings. This prevents students from experiencing fading and other propagation effects associated with mobile wireless channels. This paper describes a mobile platform for wireless communication experimentation that enables students to run experiments beyond the confines of a traditional lab, in realistic settings that cover indoor and outdoor scenarios with both fixed and mobile propagation characteristics. The platform presented consists of a Universal Software Radio Peripheral (USRP) from National Instruments to implement the transmitter, an affordable RTL-SDR USB dongle to implement the receiver, a laptop computer used to program the SDR boards, and equipment for visualizing radio signal characteristics such as a portable spectrum analyzer or oscilloscope. This choice results in a moderate overall cost for the radio hardware required by the platform, which can be easily programmed using open source software such as GNU Radio as well as software packages like Matlab or LabView. For experimentation in wireless scenarios with low mobility (both indoors and outdoors, corresponding to walking speeds) the transmitter and receiver may be placed on push carts, while for higher mobility they may be placed on university owned golf carts moving at faster speeds on the designated campus routes. Furthermore, mobile transmitters and receivers may also be placed in cars driving on the campus streets and through the university parking lots/garages to enable experiments simulating vehicle to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications

    Part 1 - Overview and tools

    Get PDF
    The embedded systems (ES) formation require a broader set of knowledge, abilities and skills including informatics and electronics concepts in order to develop highly creative and imaginative applications based in analytical studies. Moreover, in an effort to improve the education quality it needs to be followed with intense hands-on laboratories. This paper presents a new approach for embedded systems courses appropriate for both high school and undergraduate classrooms, that has been conceived and designed to accomplish these goals, while motivating and equipping this next generation of engineers to rise to future challenges. The course structure was defined in order to be easy to understand and provide a logical flow along the topics, as it mostly progresses from simple topics to more advanced ones. The developed materials include slides for class room teaching, explanatory documents for student and educators future reference, laboratories, tests, programs and application examples after each chapter. Each module is dedicated to a specific aspect of the MSP430 device, including the description of a range of peripherals. This is the first part of the paper presenting the outline of the course. Particularly, this paper identifies the course need, presents its structure, and the initial subjects covering an introductory overview in logic design and embedded processors and a description of the available software and hardware development tools for the MSP430.info:eu-repo/semantics/publishedVersio

    Designing experiments using digital fabrication in structural dynamics

    Get PDF
    In engineering, traditional approaches aimed at teaching concepts of dynamics to engineering students include the study of a dense yet sequential theoretical development of proofs and exercises. Structural dynamics are seldom taught experimentally in laboratories since these facilities should be provided with expensive equipment such as wave generators, data-acquisition systems, and heavily wired deployments with sensors. In this paper, the design of an experimental experience in the classroom based upon digital fabrication and modeling tools related to structural dynamics is presented. In particular, all experimental deployments are conceived with low-cost, open-source equipment. The hardware includes Arduino-based open-source electronics whereas the software is based upon object-oriented open-source codes for the development of physical simulations. The set of experiments and the physical simulations are reproducible and scalable in classroom-based environments.Peer ReviewedPostprint (author's final draft

    Virtual Wireless and Mobile Communication Laboratory

    Get PDF
    Creating a virtual laboratory for distance learning courses has become recently so important recently for engineering education. In this paper, we provide a full description for a remote access technique used in a wireless and mobile communication laboratory. Hence, the student will be able to perform experiments online and controlling and watching the devices by accessing a camera already built in the laboratory. Signal generator, spectrum analyzer and field-fox devices are used in the virtual laboratory.https://doi.org/10.5923/j.edu.20120201.0

    A practical approach to cellular communications standards education

    Get PDF
    The cellular communications industry is steadily growing and expanding to solve the needs of governments, businesses and communities. Standards are fundamental to enable cooperation while promoting competition. The companies involved contribute and agree on appropriate technical specifications to ensure diversity, compatibility and facilitate worldwide commercial deployment and evolution. The specifications of cellular communications standards are extensive, complex and intentionally incomplete to spur innovation and differentiation. This makes standards education a difficult endeavor, but it is highly demanded by the wireless industry. This paper describes a practical approach to teaching cellular communications standards. Our methodology leverages software-defined radio technology and uses the abstraction layer and operating environment (ALOE) to provide a practical learning environment that facilitates developing many of the needed technical and soft skills without the inherent difficulty and cost associated with radio frequency components and regulation. We define six learning stages that assimilate the standardization process and identify key learning objectives for each. We discuss our experiences when employing the proposed methodology at Barcelona Tech in Spain, compare the approach with an equivalent class at Virginia Tech in the US and make the following observations: (1) The complexity of standards need to be abstracted and presented in a form suitable for a given class. (2) Educating about cellular communications standards is most effective when students are immersed in the process. (3) Hands-on activities need careful preparation and close guidance.Peer ReviewedPostprint (published version

    Millimeter-wave communication for a last-mile autonomous transport vehicle

    Get PDF
    Low-speed autonomous transport of passengers and goods is expected to have a strong, positive impact on the reliability and ease of travelling. Various advanced functions of the involved vehicles rely on the wireless exchange of information with other vehicles and the roadside infrastructure, thereby benefitting from the low latency and high throughput characteristics that 5G technology has to offer. This work presents an investigation of 5G millimeter-wave communication links for a low-speed autonomous vehicle, focusing on the effects of the antenna positions on both the received signal quality and the link performance. It is observed that the excess loss for communication with roadside infrastructure in front of the vehicle is nearly half-power beam width independent, and the increase of the root mean square delay spread plays a minor role in the resulting signal quality, as the absolute times are considerably shorter than the typical duration of 5G New Radio symbols. Near certain threshold levels, a reduction of the received power affects the link performance through an increased error vector magnitude of the received signal, and subsequent decrease of the achieved data throughput

    Methodology to Evaluate WSN Simulators: Focusing on Energy Consumption Awareness

    Get PDF
    ISBN: 978-1-925953-09-1International audienceNowadays, there exists a large number of available network simulators, that differ in their design, goals, and characteristics. Users who have to decide which simulator is the most appropriate for their particular requirements, are today lost, faced with a panoply of disparate and diverse simulators. Hence, it is obvious the need for establishing guidelines that support users in the tasks of selecting and customizing a simulator to suit their preferences and needs. In previous works, we proposed a generic and novel methodological approach to evaluate network simulators, considering a set of qualitative and quantitative criteria. However, it lacks criteria related to Wireless Sensor Networks (WSN). Thus, the aim of this work is three fold: (i) extend the previous proposed methodology to include the evaluation of WSN simulators, such as energy consumption modelling and scalability; (ii) elaborate a study of the state of the art of WSN simulators, with the intention of identifying the most used and cited in scientific articles; and (iii) demonstrate the suitability of our novel methodology by evaluating and comparing three of the most cited simulators. Our novel methodology provides researchers with an evaluation tool that can be used to describe and compare WSN simulators in order to select the most appropriate one for a given scenario
    corecore