1,254 research outputs found

    Control System for the LEDA 6.7-MeV Proton Beam Halo Experiment

    Get PDF
    Measurement of high-power proton beam-halo formation is the ongoing scientific experiment for the Low Energy Demonstration Accelerator (LEDA) facility. To attain this measurement goal, a 52-magnet beam line containing several types of beam diagnostic instrumentation is being installed. The Experimental Physics and Industrial Control System (EPICS) and commercial software applications are presently being integrated to provide a real-time, synchronous data acquisition and control system. This system is comprised of magnet control, vacuum control, motor control, data acquisition, and data analysis. Unique requirements led to the development and integration of customized software and hardware. EPICS real-time databases, Interactive Data Language (IDL) programs, LabVIEW Virtual Instruments (VI), and State Notation Language (SNL) sequences are hosted on VXI, PC, and UNIX-based platforms which interact using the EPICS Channel Access (CA) communication protocol. Acquisition and control hardware technology ranges from DSP-based diagnostic instrumentation to the PLC-controlled vacuum system. This paper describes the control system hardware and software design, and implementation.Comment: LINAC2000 Conference, 4 pg

    Medical microprocessor systems

    Get PDF
    The practical classes and laboratory work in the discipline "Medical microprocessor systems", performed using software in the programming environment of microprocessors Texas Instruments (Code Composer Studio) and using of digital microprocessors of the Texas Instruments DSK6400 family, and models of electrical equipment in the environment of graphical programming LabVIEW 2010.Π›Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΈΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒΠΌ Π· програмування Ρ‚Π° ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²ΠΈ ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… мікропроцСсорних систСм, який Π²ΠΈΠΊΠ»Π°Π΄Π΅Π½ΠΎ Ρƒ Π½Π°Π²Ρ‡Π°Π»ΡŒΠ½ΠΎΠΌΡƒ посібнику Π΄ΠΎΠΏΠΎΠΌΠ°Π³Π°Ρ” Π½Π°ΠΊΠΎΠΏΠΈΡ‡ΡƒΠ²Π°Ρ‚ΠΈ ΠΉ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ використовувати ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρƒ Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΡŽ Π· Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ курсу Π½Π° всіх стадіях Π½Π°Π²Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ процСсу, Ρ‰ΠΎ Ρ” Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΠΌ для ΠΏΡ–Π΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ магістрів Ρ‚Π° Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎΡŽ ланкою Ρƒ Π½Π°ΡƒΠΊΠΎΠ²ΠΎΠΌΡƒ ΠΏΡ–Π·Π½Π°Π½Π½Ρ– ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΈΡ… основ Π±Ρ–ΠΎΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΎΡ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–ΠΊΠΈ.The laboratory workshop on the programming and construction of medical microprocessor systems, which is outlined in the tutorial, helps to accumulate and effectively use the information obtained from a theoretical course at all stages of the educational process, which is important for the preparation of masters and a necessary link in the scientific knowledge of the practical basics of biomedicine.Π›Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹ΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΡƒΠΌ ΠΏΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΠΈ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ мСдицинских микропроцСссорных систСм, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ Π² ΡƒΡ‡Π΅Π±Π½ΠΎΠΌ пособии ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°Ρ‚ΡŒ ΠΈ эффСктивно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΈΠ· тСорСтичСского курса Π½Π° всСх стадиях ΡƒΡ‡Π΅Π±Π½ΠΎΠ³ΠΎ процСсса, Ρ‡Ρ‚ΠΎ Π²Π°ΠΆΠ½ΠΎ для ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ магистров ΠΈ являСтся Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ Π·Π²Π΅Π½ΠΎΠΌ Π² Π½Π°ΡƒΡ‡Π½ΠΎΠΌ ΠΏΠΎΠ·Π½Π°Π½ΠΈΠΈ практичСских основ биомСдицинской элСктроники

    Cost-Effective and Energy-Efficient Techniques for Underwater Acoustic Communication Modems

    Get PDF
    Finally, the modem developed has been tested experimentally in laboratory (aquatic environment) showing that can communicates at different data rates (100..1200 bps) compared to state-of-the-art research modems. The software used include LabVIEW, MATLAB, Simulink, and Multisim (to test the electronic circuit built) has been employed.Underwater wireless sensor networks (UWSNs) are widely used in many applications related to ecosystem monitoring, and many more fields. Due to the absorption of electromagnetic waves in water and line-of-sight communication of optical waves, acoustic waves are the most suitable medium of communication in underwater environments. Underwater acoustic modem (UAM) is responsible for the transmission and reception of acoustic signals in an aquatic channel. Commercial modems may communicate at longer distances with reliability, but they are expensive and less power efficient. Research modems are designed by using a digital-signal-processor (DSP is expensive) and field-programmable-gate-array (FPGA is high power consuming device). In addition to, the use of a microcontroller is also a common practice (which is less expensive) but provides limited computational power. Hence, there is a need for a cost-effective and energy-efficient UAM to be used in budget limited applications. In this thesis different objectives are proposed. First, to identify the limitations of state-of-the-art commercial and research UAMs through a comprehensive survey. The second contribution has been the design of a low-cost acoustic modem for short-range underwater communications by using a single board computer (Raspberry-Pi), and a microcontroller (Atmega328P). The modulator, demodulator and amplifiers are designed with discrete components to reduce the overall cost. The third contribution is to design a web based underwater acoustic communication testbed along with a simulation platform (with underwater channel and sound propagation models), for testing modems. The fourth contribution is to integrate in a single module two important modules present in UAMs: the PSK modulator and the power amplifier

    Application of Virtual Instrumentation in Nuclear Physics Experiments

    Get PDF

    REMOTE LABORATORY AS CONCEPTUAL MODEL OF BLENDED LEARNING

    Get PDF
    Practice shows that the best built and maintain by the knowledge, is based on and secured personal work experience. Source of expertise can be carried out e-laboratory theoretical and practical experiments. The study key is the development of the system will hamper its inappropriate use. There is a lack of e-tools that enable students to deal with the challenge, problem or phenomenon monitoring experiments t. y. entering or selecting the initial data. New technology, especially electronic, progress is very important because it allows the development of continuing education, distance education, the democratization of it, adapting to people with different capabilities and needs. Discussed problem is creating a different type of laboratory. The key novelty is that it is not a virtual laboratory based on software tools, but the real remote-controlled electronics lab. Produced simplified conceptual model for remote laboratory experiments and demonstration. The article describes a real remote e-laboratory designed and applied in Vilniaus kolegija/University of Applied Sciences as an experimental practical method for distance learning

    Constructivist Multi-Access Lab Approach in Teaching FPGA Systems Design with LabVIEW

    Get PDF
    Embedded systems play vital role in modern applications [1]. They can be found in autos, washing machines, electrical appliances and even in toys. FPGAs are the most recent computing technology that is used in embedded systems. There is an increasing demand on FPGA based embedded systems, in particular, for applications that require rapid time responses. Engineering education curricula needs to respond to the increasing industrial demand of using FPGAs by introducing new syllabus for teaching and learning this subject. This paper describes the development of new course material for teaching FPGA-based embedded systems design by using β€˜G’ Programming Language of LabVIEW. A general overview of FPGA role in engineering education is provided. A survey of available Hardware Programming Languages for FPGAs is presented. A survey about LabVIEW utilization in engineering education is investigated; this is followed by a motivation section of why to use LabVIEW graphical programming in teaching and its capabilities. Then, a section of choosing a suitable kit for the course is laid down. Later, constructivist closed-loop model the FPGA course has been proposed in accordance with [2- 4; 80,86,89,92]. The paper is proposing a pedagogical framework for FPGA teaching; pedagogical evaluation will be conducted in future studies. The complete study has been done at the Faculty of Electrical and Electronic Engineering, Aleppo University

    Networked Control Systems for Electrical Drives

    Get PDF
    • …
    corecore