68 research outputs found

    A new proof of Vassiliev's conjecture

    Full text link
    We give a new proof of Vassiliev's planarity criterion for framed four-valent graphs (and more generally, *-graphs), which is based on Pontryagin-Kuratowski theorem.Comment: a planarity criterion for noneven *-graphs is adde

    Grafos com poucos cruzamentos e o número de cruzamentos do Kp,q em superfícies topológicas

    Get PDF
    Orientador: Orlando LeeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O número de cruzamentos de um grafo G em uma superfície ? é o menor número de cruzamentos de arestas dentre todos os possíveis desenhos de G em ?. Esta tese aborda dois problemas distintos envolvendo número de cruzamentos de grafos: caracterização de grafos com número de cruzamentos igual a um e determinação do número de cruzamentos do Kp,q em superfícies topológicas. Para grafos com número de cruzamentos um, apresentamos uma completa caracterização estrutural. Também desenvolvemos um algoritmo "prático" para reconhecer estes grafos. Em relação ao número de cruzamentos do Kp,q em superfícies, mostramos que para um inteiro positivo p e uma superfície ? fixos, existe um conjunto finito D(p,?) de desenhos "bons" de grafos bipartidos completos Kp,r (possivelmente variando o r) tal que, para todo inteiro q e todo desenho D de Kp,q, existe um desenho bom D' de Kp,q obtido através de duplicação de vértices de um desenho D'' em D(p,?) tal que o número de cruzamentos de D' é menor ou igual ao número de cruzamentos de D. Em particular, para todo q suficientemente grande, existe algum desenho do Kp,q com o menor número de cruzamentos possível que é obtido a partir de algum desenho de D(p,?) através da duplicação de vértices do mesmo. Esse resultado é uma extensão de outro obtido por Cristian et. al. para esferaAbstract: The crossing number of a graph G in a surface ? is the least amount of edge crossings among all possible drawings of G in ?. This thesis deals with two problems on crossing number of graphs: characterization of graphs with crossing number one and determining the crossing number of Kp,q in topological surfaces. For graphs with crossing number one, we present a complete structural characterization. We also show a "practical" algorithm for recognition of such graphs. For the crossing number of Kp,q in surfaces, we show that for a fixed positive integer p and a fixed surface ?, there is a finite set D(p,?) of good drawings of complete bipartite graphs Kp,r (with distinct values of r) such that, for every positive integer q and every good drawing D of Kp,q, there is a good drawing D' of Kp,q obtained from a drawing D'' of D(p,?) by duplicating vertices of D'' and such that the crossing number of D' is at most the crossing number of D. In particular, for any large enough q, there exists some drawing of Kp,q with fewest crossings which can be obtained from a drawing of D(p,?) by duplicating vertices. This extends a result of Christian et. al. for the sphereDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2014/14375-9FAPES

    Synchronized planarity with applications to constrained planarity problems

    Get PDF
    We introduce the problem Synchronized Planarity. Roughly speaking, its input is a loop-free multi-graph together with synchronization constraints that, e.g., match pairs of vertices of equal degree by providing a bijection between their edges. Synchronized Planarity then asks whether the graph admits a crossing-free embedding into the plane such that the orders of edges around synchronized vertices are consistent. We show, on the one hand, that Synchronized Planarity can be solved in quadratic time, and, on the other hand, that it serves as a powerful modeling language that lets us easily formulate several constrained planarity problems as instances of Synchronized Planarity. In particular, this lets us solve Clustered Planarity in quadratic time, where the most efficient previously known algorithm has an upper bound of O(n⁸)

    Subgraph Homeomorphism via the Edge Addition Planarity Algorithm

    Full text link

    Drawing Planar Graphs with a Prescribed Inner Face

    Full text link
    Given a plane graph GG (i.e., a planar graph with a fixed planar embedding) and a simple cycle CC in GG whose vertices are mapped to a convex polygon, we consider the question whether this drawing can be extended to a planar straight-line drawing of GG. We characterize when this is possible in terms of simple necessary conditions, which we prove to be sufficient. This also leads to a linear-time testing algorithm. If a drawing extension exists, it can be computed in the same running time
    corecore