287 research outputs found

    Indoor Positioning Techniques Based on Wireless LAN

    Full text link
    As well as delivering high speed internet, Wireless LAN (WLAN) can be used as an effective indoor positioning system. It is competitive in terms of both accuracy and cost compared to similar systems. To date, several signal strength based techniques have been proposed. Researchers at the University of New South Wales (UNSW) have developed several innovative implementations of WLAN positioning systems. This paper describes the techniques used and details the experimental results of the research

    Response adaptive modelling for reducing the storage and computation of RSS-based VLP

    Get PDF
    The precise (location) tracking of automated guided vehicles will be key in enlarging the productivity, efficiency and safety in the connected warehouse or production infrastructure. Combining the modest price tag, the adequate coverage and the potential centimetre accuracy makes Visible Light Positioning (VLP) systems appealing as replacements for the current, high-cost, tracking systems. Model-fingerprinting-based received signal strength (RSS) VLP enables the required accuracy. It requires an elaborate optical channel model fingerprinted in a fine-grained, and predefined positioning grid. Depending on the grid's granularity, constructing the fingerprint database demands a significant computation and storage effort. This paper employs response adaptive or sequential experimental design to form sparse channel models, vastly reducing the storage and computation. It is shown that model-fingerprinting-based RSS only requires modelling less than 1 percent of the grid points, in an elementary positioning cell. The sparse model can be re-evaluated as a way to cope with environment changeover. Model recomputation as a way of compensating for LED ageing is also studied

    Self-healing radio maps of wireless networks for indoor positioning

    Get PDF
    Programa Doutoral em Telecomunicações MAP-tele das Universidades do Minho, Aveiro e PortoA Indústria 4.0 está a impulsionar a mudança para novas formas de produção e otimização em tempo real nos espaços industriais que beneficiam das capacidades da Internet of Things (IoT) nomeadamente, a localização de veículos para monitorização e optimização de processos. Normalmente os espaços industriais possuem uma infraestrutura Wi-Fi que pode ser usada para localizar pessoas, bens ou veículos, sendo uma oportunidade para aumentar a produtividade. Os mapas de rádio são importantes para os sistemas de posicionamento baseados em Wi-Fi, porque representam o ambiente de rádio e são usados para estimar uma posição. Os mapas de rádio são constituídos por amostras Wi-Fi recolhidas em posições conhecidas e degradam-se ao longo do tempo devido a vários fatores, por exemplo, efeitos de propagação, adição/remoção de APs, entre outros. O processo de construção do mapa de rádio costuma ser exigente em termos de tempo e recursos humanos, constituindo um desafio considerável. Os veículos, que operam em ambientes industriais podem ser explorados para auxiliar na construção de mapas de rádio, desde que seja possível localizá-los e rastreá-los. O objetivo principal desta tese é desenvolver um sistema de posicionamento para veículos industriais com mapas de rádio auto-regenerativos (capaz de manter os mapas de rádio atualizados). Os veículos são localizados através da fusão sensorial de Wi-Fi com sensores de movimento, que permitem anotar novas amostras Wi-Fi para o mapa de rádio auto-regenerativo. São propostas duas abordagens de fusão sensorial, baseadas em Loose Coupling e Tight Coupling, para a localização dos veículos. A abordagem Tight Coupling inclui uma métrica de confiança para determinar quando é que as amostras de Wi-Fi devem ser anotadas. Deste modo, esta solução não requer calibração nem esforço humano para a construção e manutenção do mapa de rádio. Os resultados obtidos em experiências sugerem que esta solução tem potencial para a IoT e a Indústria 4.0, especialmente em serviços de localização, mas também na monitorização, suporte à navegação autónoma, e interconectividade.Industry 4.0 is driving change for new forms of production and real-time optimization in factories, which benefit from the Industrial Internet of Things (IoT) capabilities to locate industrial vehicles for monitoring, improving safety, and operations. Most industrial environments have a Wi-Fi infrastructure that can be exploited to locate people, assets, or vehicles, providing an opportunity for enhancing productivity and interconnectivity. Radio maps are important for Wi-Fi-based Indoor Position Systems (IPSs) since they represent the radio environment and are used to estimate a position. Radio maps comprise a set of Wi- Fi samples collected at known positions, and degrade over time due to several aspects, e.g., propagation effects, addition/removal of Access Points (APs), among others, hence they should be periodically updated to maintain the IPS performance. The process to build and maintain radio maps is usually time-consuming and demanding in terms of human resources, thus being challenging to perform. Vehicles, commonly present in industrial environments, can be explored to help build and maintain radio maps, as long as it is possible to locate and track them. The main objective of this thesis is to develop an IPS for industrial vehicles with self-healing radio maps (capable of keeping radio maps up to date). Vehicles are tracked using sensor fusion of Wi-Fi with motion sensors, which allows to annotate new Wi-Fi samples to build the self-healing radio maps. Two sensor fusion approaches based on Loose Coupling and Tight Coupling are proposed to track vehicles. The Tight Coupling approach includes a reliability metric to determine when Wi-Fi samples should be annotated. As a result, this solution does not depend on any calibration or human effort to build and maintain the radio map. Results obtained in real-world experiments suggest that this solution has potential for IoT and Industry 4.0, especially in location services, but also in monitoring and analytics, supporting autonomous navigation, and interconnectivity between devices.MAP-Tele Doctoral Programme scientific committee and the FCT (Fundação para a Ciência e Tecnologia) for the PhD grant (PD/BD/137401/2018

    Environment-Aware Regression for Indoor Localization based on WiFi Fingerprinting

    Get PDF
    Mendoza-Silva, G., Costa, A. C., Torres-Sospedra, J., Painho, M., & Huerta, J. (2022). Environment-Aware Regression for Indoor Localization based on WiFi Fingerprinting. IEEE Sensors Journal, 22(6), 4978 - 4988. https://doi.org/10.1109/JSEN.2021.3073878Data enrichment through interpolation or regression is a common approach to deal with sample collection for Indoor Localization with WiFi fingerprinting. This paper provides guidelines on where to collect WiFi samples, and proposes a new model for received signal strength regression. The new model creates vectors that describe the presence of obstacles between an access point and the collected samples. The vectors, the distance between the access point and the positions of the samples, and the collected, are used to train a Support Vector Regression. The experiments included some relevant analyses and showed that the proposed model improves received signal strength regression in terms of regression residuals and positioning accuracy.authorsversionpublishe

    Fingerprint Database Enhancement by Applying Interpolation and Regression Techniques for IoT-based Indoor Localization

    Get PDF
    Most applied indoor localization is based on distance and fingerprint techniques. The distance-based technique converts specific parameters to a distance, while the fingerprint technique stores parameters as the fingerprint database. The widely used Internet of Things (IoT) technologies, e.g., Wi-Fi and ZigBee, provide the localization parameters, i.e., received signal strength indicator (RSSI). The fingerprint technique advantages over the distance-based method as it straightforwardly uses the parameter and has better accuracy. However, the burden in database reconstruction in terms of complexity and cost is the disadvantage of this technique. Some solutions, i.e., interpolation, image-based method, machine learning (ML)-based, have been proposed to enhance the fingerprint methods. The limitations are complex and evaluated only in a single environment or simulation. This paper proposes applying classical interpolation and regression to create the synthetic fingerprint database using only a relatively sparse RSSI dataset. We use bilinear and polynomial interpolation and polynomial regression techniques to create the synthetic database and apply our methods to the 2D and 3D environments. We obtain an accuracy improvement of 0.2m for 2D and 0.13m for 3D by applying the synthetic database. Adding the synthetic database can tackle the sparsity issues, and the offline fingerprint database construction will be less burden. Doi: 10.28991/esj-2021-SP1-012 Full Text: PD

    Deep Learning with Partially Labeled Data for Radio Map Reconstruction

    Full text link
    In this paper, we address the problem of Received Signal Strength map reconstruction based on location-dependent radio measurements and utilizing side knowledge about the local region; for example, city plan, terrain height, gateway position. Depending on the quantity of such prior side information, we employ Neural Architecture Search to find an optimized Neural Network model with the best architecture for each of the supposed settings. We demonstrate that using additional side information enhances the final accuracy of the Received Signal Strength map reconstruction on three datasets that correspond to three major cities, particularly in sub-areas near the gateways where larger variations of the average received signal power are typically observed.Comment: 42 pages, 39 figure

    Location-free Spectrum Cartography

    Get PDF
    Spectrum cartography constructs maps of metrics such as channel gain or received signal power across a geographic area of interest using spatially distributed sensor measurements. Applications of these maps include network planning, interference coordination, power control, localization, and cognitive radios to name a few. Since existing spectrum cartography techniques require accurate estimates of the sensor locations, their performance is drastically impaired by multipath affecting the positioning pilot signals, as occurs in indoor or dense urban scenarios. To overcome such a limitation, this paper introduces a novel paradigm for spectrum cartography, where estimation of spectral maps relies on features of these positioning signals rather than on location estimates. Specific learning algorithms are built upon this approach and offer a markedly improved estimation performance than existing approaches relying on localization, as demonstrated by simulation studies in indoor scenarios.Comment: 14 pages, 12 figures, 1 table. Submitted to IEEE Transactions on Signal Processin

    Advanced Wireless Localisation Methods Dealing with Incomplete Measurements

    Get PDF
    Positioning techniques have become an essential part of modern engineering, and the improvement in computing devices brings great potential for more advanced and complicated algorithms. This thesis first studies the existing radio signal based positioning techniques and then presents three developed methods in the sense of dealing with incomplete data. Firstly, on the basis of received signal strength (RSS) location fingerprinting techniques, the Kriging interpolation methods are applied to generate complete fingerprint databases of denser reference locations from sparse or incomplete data sets, as a solution of reducing the workload and cost of offline data collection. Secondly, with incomplete knowledge of shadowing correlation, a new approach of Bayesian inference on RSS based multiple target localisation is proposed taking advantage of the inverse Wishart conjugate prior. The MCMC method (Metropolis-within-Gibbs) and the maximum a posterior (MAP) / maximum likelihood (ML) method are then considered to produce target location estimates. Thirdly, a new information fusion approach is developed for the time difference of arrival (TDOF) and frequency difference of arrival (FDOA) based dual-satellite geolocation system, as a solution to the unknown time and frequency offsets. All proposed methods are studied and validated through simulations. Result analyses and future work directions are discussed

    Dynamic spatial segmentation strategy based magnetic field indoor positioning system

    Get PDF
    In this day and age, it is imperative for anyone who relies on a mobile device to track and navigate themselves using the Global Positioning System (GPS). Such satellite-based positioning works as intended when in the outdoors, or when the device is able to have unobstructed communication with GPS satellites. Nevertheless, at the same time, GPS signal fades away in indoor environments due to the effects of multi-path components and obstructed line-of-sight to the satellite. Therefore, numerous indoor localisation applications have emerged in the market, geared towards finding a practical solution to satisfy the need for accuracy and efficiency. The case of Indoor Positioning System (IPS) is promoted by recent smart devices, which have evolved into a multimedia device with various sensors and optimised connectivity. By sensing the device’s surroundings and inferring its context, current IPS technology has proven its ability to provide stable and reliable indoor localisation information. However, such a system is usually dependent on a high-density of infrastructure that requires expensive installations (e.g. Wi-Fi-based IPS). To make a trade-off between accuracy and cost, considerable attention from many researchers has been paid to the range of infrastructure-free technologies, particularly exploiting the earth’s magnetic field (EMF). EMF is a promising signal type that features ubiquitous availability, location specificity and long-term stability. When considering the practicality of this typical signal in IPS, such a system only consists of mobile device and the EMF signal. To fully comprehend the conventional EMF-based IPS reported in the literature, a preliminary experimental study on indoor EMF characteristics was carried out at the beginning of this research. The results revealed that the positioning performance decreased when the presence of magnetic disturbance sources was lowered to a minimum. In response to this finding, a new concept of spatial segmentation is devised in this research based on magnetic anomaly (MA). Therefore, this study focuses on developing innovative techniques based on spatial segmentation strategy and machine learning algorithms for effective indoor localisation using EMF. In this thesis, four closely correlated components in the proposed system are included: (i) Kriging interpolation-based fingerprinting map; (ii) magnetic intensity-based spatial segmentation; (iii) weighted Naïve Bayes classification (WNBC); (iv) fused features-based k-Nearest-Neighbours (kNN) algorithm. Kriging interpolation-based fingerprinting map reconstructs the original observed EMF positioning database in the calibration phase by interpolating predicted points. The magnetic intensity-based spatial segmentation component then investigates the variation tendency of ambient EMF signals in the new database to analyse the distribution of magnetic disturbance sources, and accordingly, segmenting the test site. Then, WNBC blends the exclusive characteristics of indoor EMF into original Naïve Bayes Classification (NBC) to enable a more accurate and efficient segmentation approach. It is well known that the best IPS implementation often exerts the use of multiple positing sources in order to maximise accuracy. The fused features-based kNN component used in the positioning phase finally learns the various parameters collected in the calibration phase, continuously improving the positioning accuracy of the system. The proposed system was evaluated on multiple indoor sites with diverse layouts. The results show that it outperforms state-of-the-art approaches and demonstrate an average accuracy between 1-2 meters achieved in typical sites by the best methods proposed in this thesis across most of the experimental environments. It can be believed that such an accurate approach will enable the future of infrastructure–free IPS technologies

    Location prediction optimisation in WSNs using kriging interpolation

    Get PDF
    © The Institution of Engineering and Technology 2016. Many wireless sensor network (WSN) applications rely on precise location or distance information. Despite the potentials of WSNs, efficient location prediction is one of the subsisting challenges. This study presents novel prediction algorithms based on a Kriging interpolation technique. Given that each sensor is aware of its location only, the aims of this work are to accurately predict the temperature at uncovered areas and estimate positions of heat sources. By taking few measurements within the field of interest and by using Kriging interpolation to iteratively enhance predictions of temperature and location of heat sources in uncovered regions, the degree of accuracy is significantly improved. Following a range of independent Monte Carlo runs in different experiments, it is shown through a comparative analysis that the proposed algorithm delivers approximately 98% prediction accuracy
    corecore