356 research outputs found

    Effective Hausdorff Dimension in General Metric Spaces

    Get PDF
    We introduce the concept of effective dimension for a wide class of metric spaces whose metric is not necessarily based on a measure. Effective dimension was defined by Lutz (Inf. Comput., 187(1), 49–79, 2003) for Cantor space and has also been extended to Euclidean space. Lutz effectivization uses gambling, in particular the concept of gale and supergale, our extension of Hausdorff dimension to other metric spaces is also based on a supergale characterization of dimension, which in practice avoids an extra quantifier present in the classical definition of dimension that is based on Hausdorff measure and therefore allows effectivization for small time-bounds. We present here the concept of constructive dimension and its characterization in terms of Kolmogorov complexity, for which we extend the concept of Kolmogorov complexity to any metric space defining the Kolmogorov complexity of a point at a certain precision. Further research directions are indicated

    The Dimensions of Individual Strings and Sequences

    Get PDF
    A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary) sequence S a dimension, which is a real number dim(S) in the interval [0,1]. Sequences that are random (in the sense of Martin-Lof) have dimension 1, while sequences that are decidable, \Sigma^0_1, or \Pi^0_1 have dimension 0. It is shown that for every \Delta^0_2-computable real number \alpha in [0,1] there is a \Delta^0_2 sequence S such that \dim(S) = \alpha. A discrete version of constructive dimension is also developed using termgales, which are supergale-like functions that bet on the terminations of (finite, binary) strings as well as on their successive bits. This discrete dimension is used to assign each individual string w a dimension, which is a nonnegative real number dim(w). The dimension of a sequence is shown to be the limit infimum of the dimensions of its prefixes. The Kolmogorov complexity of a string is proven to be the product of its length and its dimension. This gives a new characterization of algorithmic information and a new proof of Mayordomo's recent theorem stating that the dimension of a sequence is the limit infimum of the average Kolmogorov complexity of its first n bits. Every sequence that is random relative to any computable sequence of coin-toss biases that converge to a real number \beta in (0,1) is shown to have dimension \H(\beta), the binary entropy of \beta.Comment: 31 page

    Effective Continued Fraction Dimension versus Effective Hausdorff Dimension of Reals

    Full text link
    We establish that constructive continued fraction dimension originally defined using ss-gales is robust, but surprisingly, that the effective continued fraction dimension and effective (base-bb) Hausdorff dimension of the same real can be unequal in general. We initially provide an equivalent characterization of continued fraction dimension using Kolmogorov complexity. In the process, we construct an optimal lower semi-computable ss-gale for continued fractions. We also prove new bounds on the Lebesgue measure of continued fraction cylinders, which may be of independent interest. We apply these bounds to reveal an unexpected behavior of continued fraction dimension. It is known that feasible dimension is invariant with respect to base conversion. We also know that Martin-L\"of randomness and computable randomness are invariant not only with respect to base conversion, but also with respect to the continued fraction representation. In contrast, for any 0<ε<0.50 < \varepsilon < 0.5, we prove the existence of a real whose effective Hausdorff dimension is less than ε\varepsilon, but whose effective continued fraction dimension is greater than or equal to 0.50.5. This phenomenon is related to the ``non-faithfulness'' of certain families of covers, investigated by Peres and Torbin and by Albeverio, Ivanenko, Lebid and Torbin. We also establish that for any real, the constructive Hausdorff dimension is at most its effective continued fraction dimension

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Dimension Extractors and Optimal Decompression

    Full text link
    A *dimension extractor* is an algorithm designed to increase the effective dimension -- i.e., the amount of computational randomness -- of an infinite binary sequence, in order to turn a "partially random" sequence into a "more random" sequence. Extractors are exhibited for various effective dimensions, including constructive, computable, space-bounded, time-bounded, and finite-state dimension. Using similar techniques, the Kucera-Gacs theorem is examined from the perspective of decompression, by showing that every infinite sequence S is Turing reducible to a Martin-Loef random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S, which is shown to be the optimal ratio of query bits to computed bits achievable with Turing reductions. The extractors and decompressors that are developed lead directly to new characterizations of some effective dimensions in terms of optimal decompression by Turing reductions.Comment: This report was combined with a different conference paper "Every Sequence is Decompressible from a Random One" (cs.IT/0511074, at http://dx.doi.org/10.1007/11780342_17), and both titles were changed, with the conference paper incorporated as section 5 of this new combined paper. The combined paper was accepted to the journal Theory of Computing Systems, as part of a special issue of invited papers from the second conference on Computability in Europe, 200

    Translating the Cantor set by a random

    Full text link
    We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set "cancels randomness" in the sense that some of its members, when added to Martin-Lof random reals, identify a point with lower constructive dimension than the random itself. In particular, we find the Hausdorff dimension of the set of points in a Cantor set translate with a given constructive dimension
    corecore