24,028 research outputs found

    Tracing commodities in indoor environments for service robotics

    Get PDF
    Daily life assistance for elderly people is one of the most promising scenarios for service robots in the the near future. In particular, the go-and-fetch task will be one of the most demanding tasks in these cases. In this paper, we present an informationally structured room that supports a service robot in the task of daily object fetching. Our environment contains different distributed sensors including a floor sensing system and several intelligent cabinets. Sensor information is send to a centralized management system which process the data and make it available to a service robot which is assisting people in the room. We additionally present the first steps of an intelligent framework used to maintain information about locations of commodities in our informationally structured room. This information will be used by the service robot to find objects under people requests. One of the main goal of our intelligent environment is to maintain a small number of sensors to avoid interfering with the daily activity of people, and to reduce as much as possible invasion of their privacy. In order to compensate this limited available sensor information, our framework aims to exploit knowledge about people's activity and interaction with objects, to infer reliable information about the location of commodities. This paper presents simulated results that demonstrate the suitability of this framework to be applied to a service robotic environment equipped with limited sensors. In addition we discuss some preliminary experiments using our real environment and robot

    The Operation of Autonomous Mobile Robot Assistants in the Environment of Care Facilities Adopting a User-Centered Development Design

    Get PDF
    The successful development of autonomous mobile robot assistants depends significantly on the well-balanced reconcilements of the technically possible and the socially desirable. Based on empirical research 2 substantiated conclusions can be established for the suitability of "scenario-based design" (Rosson/Carroll 2003) for the successful development of mobile robot assistants and automated guided vehicles to be applied for service functions in stationary care facilities for seniors.User-Centered Technology Development, Knowledge-Transfer, Participative Assessment Methods, Robotics

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments

    Towards participatory design of social robots

    Get PDF

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201
    • …
    corecore