30,144 research outputs found

    A Knowledge-Based Semantic Kernel for Text Classification

    Full text link
    Abstract. Typically, in textual document classification the documents are represented in the vector space using the “Bag of Words ” (BOW) approach. Despite its ease of use, BOW representation cannot handle word synonymy and polysemy problems and does not consider semantic relatedness between words. In this paper, we overcome the shortages of the BOW approach by embedding a known WordNet-based semantic relatedness measure for pairs of words, namely Omiotis, into a seman-tic kernel. The suggested measure incorporates the TF-IDF weighting scheme, thus creating a semantic kernel which combines both seman-tic and statistical information from text. Empirical evaluation with real data sets demonstrates that our approach successfully achieves improved classification accuracy with respect to the standard BOW representation, when Omiotis is embedded in four different classifiers

    A corpus-based semantic kernel for text classification by using meaning values of terms

    Get PDF
    Text categorization plays a crucial role in both academic and commercial platforms due to the growing demand for automatic organization of documents. Kernel-based classification algorithms such as Support Vector Machines (SVM) have become highly popular in the task of text mining. This is mainly due to their relatively high classification accuracy on several application domains as well as their ability to handle high dimensional and sparse data which is the prohibitive characteristics of textual data representation. Recently, there is an increased interest in the exploitation of background knowledge such as ontologies and corpus-based statistical knowledge in text categorization. It has been shown that, by replacing the standard kernel functions such as linear kernel with customized kernel functions which take advantage of this background knowledge, it is possible to increase the performance of SVM in the text classification domain. Based on this, we propose a novel semantic smoothing kernel for SVM. The suggested approach is based on a meaning measure, which calculates the meaningfulness of the terms in the context of classes. The documents vectors are smoothed based on these meaning values of the terms in the context of classes. Since we efficiently make use of the class information in the smoothing process, it can be considered a supervised smoothing kernel. The meaning measure is based on the Helmholtz principle from Gestalt theory and has previously been applied to several text mining applications such as document summarization and feature extraction. However, to the best of our knowledge, ours is the first study to use meaning measure in a supervised setting to build a semantic kernel for SVM. We evaluated the proposed approach by conducting a large number of experiments on well-known textual datasets and present results with respect to different experimental conditions. We compare our results with traditional kernels used in SVM such as linear kernel as well as with several corpus-based semantic kernels. Our results show that classification performance of the proposed approach outperforms other kernels

    Understanding Patient Safety Reports via Multi-label Text Classification and Semantic Representation

    Get PDF
    Medical errors are the results of problems in health care delivery. One of the key steps to eliminate errors and improve patient safety is through patient safety event reporting. A patient safety report may record a number of critical factors that are involved in the health care when incidents, near misses, and unsafe conditions occur. Therefore, clinicians and risk management can generate actionable knowledge by harnessing useful information from reports. To date, efforts have been made to establish a nationwide reporting and error analysis mechanism. The increasing volume of reports has been driving improvement in quantity measures of patient safety. For example, statistical distributions of errors across types of error and health care settings have been well documented. Nevertheless, a shift to quality measure is highly demanded. In a health care system, errors are likely to occur if one or more components (e.g., procedures, equipment, etc.) that are intrinsically associated go wrong. However, our understanding of what and how these components are connected is limited for at least two reasons. Firstly, the patient safety reports present difficulties in aggregate analysis since they are large in volume and complicated in semantic representation. Secondly, an efficient and clinically valuable mechanism to identify and categorize these components is absent. I strive to make my contribution by investigating the multi-labeled nature of patient safety reports. To facilitate clinical implementation, I propose that machine learning and semantic information of reports, e.g., semantic similarity between terms, can be used to jointly perform automated multi-label classification. My work is divided into three specific aims. In the first aim, I developed a patient safety ontology to enhance semantic representation of patient safety reports. The ontology supports a number of applications including automated text classification. In the second aim, I evaluated multilabel text classification algorithms on patient safety reports. The results demonstrated a list of productive algorithms with balanced predictive power and efficiency. In the third aim, to improve the performance of text classification, I developed a framework for incorporating semantic similarity and kernel-based multi-label text classification. Semantic similarity values produced by different semantic representation models are evaluated in the classification tasks. Both ontology-based and distributional semantic similarity exerted positive influence on classification performance but the latter one shown significant efficiency in terms of the measure of semantic similarity. Our work provides insights into the nature of patient safety reports, that is a report can be labeled by multiple components (e.g., different procedures, settings, error types, and contributing factors) it contains. Multi-labeled reports hold promise to disclose system vulnerabilities since they provide the insight of the intrinsically correlated components of health care systems. I demonstrated the effectiveness and efficiency of the use of automated multi-label text classification embedded with semantic similarity information on patient safety reports. The proposed solution holds potential to incorporate with existing reporting systems, significantly reducing the workload of aggregate report analysis

    Designing Semantic Kernels as Implicit Superconcept Expansions

    Get PDF
    Recently, there has been an increased interest in the exploitation of background knowledge in the context of text mining tasks, especially text classification. At the same time, kernel-based learning algorithms like Support Vector Machines have become a dominant paradigm in the text mining community. Amongst other reasons, this is also due to their capability to achieve more accurate learning results by replacing standard linear kernel (bag-of-words) with customized kernel functions which incorporate additional apriori knowledge. In this paper we propose a new approach to the design of ‘semantic smoothing kernels’ by means of an implicit superconcept expansion using well-known measures of term similarity. The experimental evaluation on two different datasets indicates that our approach consistently improves performance in situations where (i) training data is scarce or (ii) the bag-ofwords representation is too sparse to build stable models when using the linear kernel

    Semi-supervised prediction of protein interaction sentences exploiting semantically encoded metrics

    Get PDF
    Protein-protein interaction (PPI) identification is an integral component of many biomedical research and database curation tools. Automation of this task through classification is one of the key goals of text mining (TM). However, labelled PPI corpora required to train classifiers are generally small. In order to overcome this sparsity in the training data, we propose a novel method of integrating corpora that do not contain relevance judgements. Our approach uses a semantic language model to gather word similarity from a large unlabelled corpus. This additional information is integrated into the sentence classification process using kernel transformations and has a re-weighting effect on the training features that leads to an 8% improvement in F-score over the baseline results. Furthermore, we discover that some words which are generally considered indicative of interactions are actually neutralised by this process
    corecore