2,903 research outputs found

    CALIPER: Continuous Authentication Layered with Integrated PKI Encoding Recognition

    Full text link
    Architectures relying on continuous authentication require a secure way to challenge the user's identity without trusting that the Continuous Authentication Subsystem (CAS) has not been compromised, i.e., that the response to the layer which manages service/application access is not fake. In this paper, we introduce the CALIPER protocol, in which a separate Continuous Access Verification Entity (CAVE) directly challenges the user's identity in a continuous authentication regime. Instead of simply returning authentication probabilities or confidence scores, CALIPER's CAS uses live hard and soft biometric samples from the user to extract a cryptographic private key embedded in a challenge posed by the CAVE. The CAS then uses this key to sign a response to the CAVE. CALIPER supports multiple modalities, key lengths, and security levels and can be applied in two scenarios: One where the CAS must authenticate its user to a CAVE running on a remote server (device-server) for access to remote application data, and another where the CAS must authenticate its user to a locally running trusted computing module (TCM) for access to local application data (device-TCM). We further demonstrate that CALIPER can leverage device hardware resources to enable privacy and security even when the device's kernel is compromised, and we show how this authentication protocol can even be expanded to obfuscate direct kernel object manipulation (DKOM) malwares.Comment: Accepted to CVPR 2016 Biometrics Worksho

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    A Decentralised Digital Identity Architecture

    Get PDF
    Current architectures to validate, certify, and manage identity are based on centralised, top-down approaches that rely on trusted authorities and third-party operators. We approach the problem of digital identity starting from a human rights perspective, with a primary focus on identity systems in the developed world. We assert that individual persons must be allowed to manage their personal information in a multitude of different ways in different contexts and that to do so, each individual must be able to create multiple unrelated identities. Therefore, we first define a set of fundamental constraints that digital identity systems must satisfy to preserve and promote privacy as required for individual autonomy. With these constraints in mind, we then propose a decentralised, standards-based approach, using a combination of distributed ledger technology and thoughtful regulation, to facilitate many-to-many relationships among providers of key services. Our proposal for digital identity differs from others in its approach to trust in that we do not seek to bind credentials to each other or to a mutually trusted authority to achieve strong non-transferability. Because the system does not implicitly encourage its users to maintain a single aggregated identity that can potentially be constrained or reconstructed against their interests, individuals and organisations are free to embrace the system and share in its benefits.Comment: 30 pages, 10 figures, 3 table

    Password Cracking and Countermeasures in Computer Security: A Survey

    Full text link
    With the rapid development of internet technologies, social networks, and other related areas, user authentication becomes more and more important to protect the data of the users. Password authentication is one of the widely used methods to achieve authentication for legal users and defense against intruders. There have been many password cracking methods developed during the past years, and people have been designing the countermeasures against password cracking all the time. However, we find that the survey work on the password cracking research has not been done very much. This paper is mainly to give a brief review of the password cracking methods, import technologies of password cracking, and the countermeasures against password cracking that are usually designed at two stages including the password design stage (e.g. user education, dynamic password, use of tokens, computer generations) and after the design (e.g. reactive password checking, proactive password checking, password encryption, access control). The main objective of this work is offering the abecedarian IT security professionals and the common audiences with some knowledge about the computer security and password cracking, and promoting the development of this area.Comment: add copyright to the tables to the original authors, add acknowledgement to helpe

    A new biometric ID-based cryptography protocol and security analysis using Petri nets

    Get PDF
    This paper presents a Petri net (PN) approach to modelling, simulating, and analysing the new protocol we have proposed. This new protocol is an enhanced authentication scheme based on a biometric verification mechanism and identity based cryptography. A formal approach like Petri nets allows one to represent cryptographic protocols. For the sake of simplicity, a complex PN model will not be discussed in this paper until all attacks are demonstrated and the model proved to be secure. This paper shows how Petri nets are used to model, analyse and detect flaws in our new protocol. First, our proposed protocol is modelled without an adversary, and then a generic adversary model is added to examine all possible adversary behaviours. Finally we demonstrate how Petri nets can be used to analyse security threats such as man-in-the-middle attack, reflection attack, and parallel session attack on this protocol
    corecore