13,746 research outputs found

    Big data in higher education: an action research on managing student engagement with business intelligence

    Get PDF
    This research aims to explore the value of Big Data in student engagement management. It presents an action research on applying BI in a UK higher education institution that has developed and implemented a student engagement tracking system (SES) for better student engagement management. The SES collects data from various sources, including RFID tracking devices across many locations in the campus and student online activities. This public funded research project has enhanced the current SES with BI solutions and raised awareness on the value of the Big Data in improving student experience. The action research concerns with the organizational wide development and deployment of Intelligent Student Engagement System involving a diverse range of stakeholders. The activities undertaken to date have revealed interesting findings and implications for advancing our understanding and research in leveraging the benefit of the Big Data in Higher Education from a socio-technical perspective

    Intelligent student engagement management : applying business intelligence in higher education

    Get PDF
    Advances in emerging ICT have enabled organisations to develop innovative ways to intelligently collect data that may not be possible before. However, this leads to the explosion of data and unprecedented challenges in making strategic and effective use of available data. This research-in-progress paper presents an action research focusing on applying business intelligence (BI) in a UK higher education institution that has developed a student engagement tracking system (SES) for student engagement management. The current system serves merely as a data collection and processing system, which needs significant enhancement for better decision support. This action research aims to enhance the current SETS with BI solutions and explore its strategic use. The research attempts to follow socio-technical approach in its effort to make the BI application a success. Progress and experience so far has revealed interesting findings on advancing our understanding and research in organisation-wide BI for better decision-making

    Piloting Multimodal Learning Analytics using Mobile Mixed Reality in Health Education

    Get PDF
    © 2019 IEEE. Mobile mixed reality has been shown to increase higher achievement and lower cognitive load within spatial disciplines. However, traditional methods of assessment restrict examiners ability to holistically assess spatial understanding. Multimodal learning analytics seeks to investigate how combinations of data types such as spatial data and traditional assessment can be combined to better understand both the learner and learning environment. This paper explores the pedagogical possibilities of a smartphone enabled mixed reality multimodal learning analytics case study for health education, focused on learning the anatomy of the heart. The context for this study is the first loop of a design based research study exploring the acquisition and retention of knowledge by piloting the proposed system with practicing health experts. Outcomes from the pilot study showed engagement and enthusiasm of the method among the experts, but also demonstrated problems to overcome in the pedagogical method before deployment with learners

    Assessing collaborative learning: big data, analytics and university futures

    Get PDF
    Traditionally, assessment in higher education has focused on the performance of individual students. This focus has been a practical as well as an epistemic one: methods of assessment are constrained by the technology of the day, and in the past they required the completion by individuals under controlled conditions, of set-piece academic exercises. Recent advances in learning analytics, drawing upon vast sets of digitally-stored student activity data, open new practical and epistemic possibilities for assessment and carry the potential to transform higher education. It is becoming practicable to assess the individual and collective performance of team members working on complex projects that closely simulate the professional contexts that graduates will encounter. In addition to academic knowledge this authentic assessment can include a diverse range of personal qualities and dispositions that are key to the computer-supported cooperative working of professionals in the knowledge economy. This paper explores the implications of such opportunities for the purpose and practices of assessment in higher education, as universities adapt their institutional missions to address 21st Century needs. The paper concludes with a strong recommendation for university leaders to deploy analytics to support and evaluate the collaborative learning of students working in realistic contexts

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning
    • …
    corecore