360 research outputs found

    A comparison of parsing technologies for the biomedical domain

    Get PDF
    This paper reports on a number of experiments which are designed to investigate the extent to which current nlp resources are able to syntactically and semantically analyse biomedical text. We address two tasks: parsing a real corpus with a hand-built widecoverage grammar, producing both syntactic analyses and logical forms; and automatically computing the interpretation of compound nouns where the head is a nominalisation (e.g., hospital arrival means an arrival at hospital, while patient arrival means an arrival of a patient). For the former task we demonstrate that exible and yet constrained `preprocessing ' techniques are crucial to success: these enable us to use part-of-speech tags to overcome inadequate lexical coverage, and to `package up' complex technical expressions prior to parsing so that they are blocked from creating misleading amounts of syntactic complexity. We argue that the xml-processing paradigm is ideally suited for automatically preparing the corpus for parsing. For the latter task, we compute interpretations of the compounds by exploiting surface cues and meaning paraphrases, which in turn are extracted from the parsed corpus. This provides an empirical setting in which we can compare the utility of a comparatively deep parser vs. a shallow one, exploring the trade-o between resolving attachment ambiguities on the one hand and generating errors in the parses on the other. We demonstrate that a model of the meaning of compound nominalisations is achievable with the aid of current broad-coverage parsers

    Foundation, Implementation and Evaluation of the MorphoSaurus System: Subword Indexing, Lexical Learning and Word Sense Disambiguation for Medical Cross-Language Information Retrieval

    Get PDF
    Im medizinischen Alltag, zu welchem viel Dokumentations- und Recherchearbeit gehört, ist mittlerweile der überwiegende Teil textuell kodierter Information elektronisch verfügbar. Hiermit kommt der Entwicklung leistungsfähiger Methoden zur effizienten Recherche eine vorrangige Bedeutung zu. Bewertet man die Nützlichkeit gängiger Textretrievalsysteme aus dem Blickwinkel der medizinischen Fachsprache, dann mangelt es ihnen an morphologischer Funktionalität (Flexion, Derivation und Komposition), lexikalisch-semantischer Funktionalität und der Fähigkeit zu einer sprachübergreifenden Analyse großer Dokumentenbestände. In der vorliegenden Promotionsschrift werden die theoretischen Grundlagen des MorphoSaurus-Systems (ein Akronym für Morphem-Thesaurus) behandelt. Dessen methodischer Kern stellt ein um Morpheme der medizinischen Fach- und Laiensprache gruppierter Thesaurus dar, dessen Einträge mittels semantischer Relationen sprachübergreifend verknüpft sind. Darauf aufbauend wird ein Verfahren vorgestellt, welches (komplexe) Wörter in Morpheme segmentiert, die durch sprachunabhängige, konzeptklassenartige Symbole ersetzt werden. Die resultierende Repräsentation ist die Basis für das sprachübergreifende, morphemorientierte Textretrieval. Neben der Kerntechnologie wird eine Methode zur automatischen Akquise von Lexikoneinträgen vorgestellt, wodurch bestehende Morphemlexika um weitere Sprachen ergänzt werden. Die Berücksichtigung sprachübergreifender Phänomene führt im Anschluss zu einem neuartigen Verfahren zur Auflösung von semantischen Ambiguitäten. Die Leistungsfähigkeit des morphemorientierten Textretrievals wird im Rahmen umfangreicher, standardisierter Evaluationen empirisch getestet und gängigen Herangehensweisen gegenübergestellt

    Biomedical Named Entity Recognition: A Review

    Get PDF
    Biomedical Named Entity Recognition (BNER) is the task of identifying biomedical instances such as chemical compounds, genes, proteins, viruses, disorders, DNAs and RNAs. The key challenge behind BNER lies on the methods that would be used for extracting such entities. Most of the methods used for BNER were relying on Supervised Machine Learning (SML) techniques. In SML techniques, the features play an essential role in terms of improving the effectiveness of the recognition process. Features can be identified as a set of discriminating and distinguishing characteristics that have the ability to indicate the occurrence of an entity. In this manner, the features should be able to generalize which means to discriminate the entities correctly even on new and unseen samples. Several studies have tackled the role of feature in terms of identifying named entities. However, with the surge of biomedical researches, there is a vital demand to explore biomedical features. This paper aims to accommodate a review study on the features that could be used for BNER in which various types of features will be examined including morphological features, dictionary-based features, lexical features and distance-based features

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    Normalizing English for Interlingua : Multi-channel Approach to Global Machine Translation

    Get PDF
    The paper tries to demonstrate that when English is used as interlingua in translating between two languages it can be normalized for reducing unnecessary ambiguity. Current usage of English often omits such critical features as the relative pronoun and the conjunction for marking the beginning of the subordinate clause. In addition to causing ambiguity, the practice also makes it difficult to produce correct structures in target language. If the source language makes such structures explicit, it is possible to carry this information through the whole translation chain into target language. If we consider English language as an interlingua in a multilingual translation environment, we should make the intermediate stage as little ambiguous as possible. There are also other possibilities for reducing ambiguity, such as selection of less ambiguous translation equivalents. Also, long noun compounds, which are often ambiguous, can be presented in unambiguous form, when the linguistic knowledge of the source language is included.Non peer reviewe

    Las Relaciones Semánticas Predicen la Desambiguación Estructural de las Unidades Terminológicas Poliléxicas con Tres Formantes

    Get PDF
    For English multiword terms (MWTs) of three or more constituents (e.g., sea level rise), a semantic analysis, based on linguistic and domain knowledge, is necessary to resolve the dependency between components. This structural disambiguation, often known as bracketing, involves the grouping of the dependent components so that the MWT is reduced to its basic form of modifier+head, as in [sea level] [rise]. Knowledge of these dependencies facilitates the comprehension of an MWT and its accurate translation into other languages. Moreover, the resolution of MWT bracketing provides a higher overall accuracy in machine translation systems and sentence parsers. This paper thus presents a pilot study that explored whether the bracketing of a ternary compound, when used as an argument in a sentence, can be predicted from the semantic information encoded in that sentence. It is shown that, with a random forest model, the semantic relation of the MWT to another argument in the same sentence, the lexical domain of the predicate, and the semantic role of the MWT were able to predict the bracketing of the 190 ternary compounds used as arguments in a sample of 188 semantically annotated sentences from a Coastal Engineering corpus (100% F1-score). Furthermore, only the semantic relation of an MWT to another argument in the same sentence proved enormous capability to predict ternary compound bracketing with a binary decision-tree model (94.12%F1-score).En unidades terminológicas poliléxicas (UTP) con tres o más formantes en lengua inglesa (p.ej., sea level rise), establecer la dependencia entre dichos formantes requiere de un análisis lingüístico y de conocimiento especializado del área concreta en que se emplean las UTP. Esta desambiguación estructural, o bracketing, implica el agrupamiento de los formantes para reducir la UTP a su estructura básica de modificador+núcleo, como en [sea level] [rise]. Conocer el bracketing de una UTP no solo facilita su comprensión y traducción a otras lenguas, sino que también mejora el desempeño de los sistemas de traducción automática y de los analizadores sintácticos. Por tanto, en este artículo presentamos un estudio piloto que explora si el bracketing de una UTP con tres formantes, al emplearse como argumento en una oración, puede predecirse a partir de la información semántica codificada en dicha oración. Se muestra que, con un modelo random forest, la relación semántica de la UTP con otro argumento en la misma oración, el dominio léxico del verbo y el rol semántico de la UTP son capaces de predecir el bracketing de las 190 UTP ternarias que se usan como argumento en una muestra de 188 oraciones, anotadas semánticamente y extraídas de un corpus sobre ingeniería de costas (con un valor de F1 del 100%). Además, únicamente la relación semántica que mantiene una UTP ternaria con otro argumento en la misma oración posee una enorme capacidad para predecir su bracketing mediante un árbol de decisión binario (con un valor de F1 del 94,12%).This research was carried out as part of projects PID2020-118369GB-I00, "Transversal Integration of Culture in a Terminological Knowledge Base on Environment" (TRANSCULTURE), funded by the Spanish Ministry of Science and Innovation; and A-HUM-600-UGR20, "Culture as Transversal Module in a Terminological Knowledge Base on the Environment" (CULTURAMA), funded by the Andalusian Ministry of Economy, Knowledge, Business, and University

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen
    corecore