4,240 research outputs found

    Pair-Linking for Collective Entity Disambiguation: Two Could Be Better Than All

    Full text link
    Collective entity disambiguation aims to jointly resolve multiple mentions by linking them to their associated entities in a knowledge base. Previous works are primarily based on the underlying assumption that entities within the same document are highly related. However, the extend to which these mentioned entities are actually connected in reality is rarely studied and therefore raises interesting research questions. For the first time, we show that the semantic relationships between the mentioned entities are in fact less dense than expected. This could be attributed to several reasons such as noise, data sparsity and knowledge base incompleteness. As a remedy, we introduce MINTREE, a new tree-based objective for the entity disambiguation problem. The key intuition behind MINTREE is the concept of coherence relaxation which utilizes the weight of a minimum spanning tree to measure the coherence between entities. Based on this new objective, we design a novel entity disambiguation algorithms which we call Pair-Linking. Instead of considering all the given mentions, Pair-Linking iteratively selects a pair with the highest confidence at each step for decision making. Via extensive experiments, we show that our approach is not only more accurate but also surprisingly faster than many state-of-the-art collective linking algorithms

    MAG: A Multilingual, Knowledge-base Agnostic and Deterministic Entity Linking Approach

    Full text link
    Entity linking has recently been the subject of a significant body of research. Currently, the best performing approaches rely on trained mono-lingual models. Porting these approaches to other languages is consequently a difficult endeavor as it requires corresponding training data and retraining of the models. We address this drawback by presenting a novel multilingual, knowledge-based agnostic and deterministic approach to entity linking, dubbed MAG. MAG is based on a combination of context-based retrieval on structured knowledge bases and graph algorithms. We evaluate MAG on 23 data sets and in 7 languages. Our results show that the best approach trained on English datasets (PBOH) achieves a micro F-measure that is up to 4 times worse on datasets in other languages. MAG, on the other hand, achieves state-of-the-art performance on English datasets and reaches a micro F-measure that is up to 0.6 higher than that of PBOH on non-English languages.Comment: Accepted in K-CAP 2017: Knowledge Capture Conferenc

    Distantly Labeling Data for Large Scale Cross-Document Coreference

    Full text link
    Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.Comment: 16 pages, submitted to ECML 201

    Context-based person identification for news collection

    Get PDF

    Neural Collective Entity Linking

    Full text link
    Entity Linking aims to link entity mentions in texts to knowledge bases, and neural models have achieved recent success in this task. However, most existing methods rely on local contexts to resolve entities independently, which may usually fail due to the data sparsity of local information. To address this issue, we propose a novel neural model for collective entity linking, named as NCEL. NCEL applies Graph Convolutional Network to integrate both local contextual features and global coherence information for entity linking. To improve the computation efficiency, we approximately perform graph convolution on a subgraph of adjacent entity mentions instead of those in the entire text. We further introduce an attention scheme to improve the robustness of NCEL to data noise and train the model on Wikipedia hyperlinks to avoid overfitting and domain bias. In experiments, we evaluate NCEL on five publicly available datasets to verify the linking performance as well as generalization ability. We also conduct an extensive analysis of time complexity, the impact of key modules, and qualitative results, which demonstrate the effectiveness and efficiency of our proposed method.Comment: 12 pages, 3 figures, COLING201
    • …
    corecore