73,394 research outputs found

    A Framework for Algorithm Stability

    Get PDF
    We say that an algorithm is stable if small changes in the input result in small changes in the output. This kind of algorithm stability is particularly relevant when analyzing and visualizing time-varying data. Stability in general plays an important role in a wide variety of areas, such as numerical analysis, machine learning, and topology, but is poorly understood in the context of (combinatorial) algorithms. In this paper we present a framework for analyzing the stability of algorithms. We focus in particular on the tradeoff between the stability of an algorithm and the quality of the solution it computes. Our framework allows for three types of stability analysis with increasing degrees of complexity: event stability, topological stability, and Lipschitz stability. We demonstrate the use of our stability framework by applying it to kinetic Euclidean minimum spanning trees

    Topological Stability of Kinetic kk-Centers

    Get PDF
    We study the kk-center problem in a kinetic setting: given a set of continuously moving points PP in the plane, determine a set of kk (moving) disks that cover PP at every time step, such that the disks are as small as possible at any point in time. Whereas the optimal solution over time may exhibit discontinuous changes, many practical applications require the solution to be stable: the disks must move smoothly over time. Existing results on this problem require the disks to move with a bounded speed, but this model is very hard to work with. Hence, the results are limited and offer little theoretical insight. Instead, we study the topological stability of kk-centers. Topological stability was recently introduced and simply requires the solution to change continuously, but may do so arbitrarily fast. We prove upper and lower bounds on the ratio between the radii of an optimal but unstable solution and the radii of a topologically stable solution---the topological stability ratio---considering various metrics and various optimization criteria. For k=2k = 2 we provide tight bounds, and for small k>2k > 2 we can obtain nontrivial lower and upper bounds. Finally, we provide an algorithm to compute the topological stability ratio in polynomial time for constant kk
    • …
    corecore