341 research outputs found

    Circus in Motion: A Multimodal Exergame Supporting Vestibular Therapy for Children with Autism

    Get PDF
    Exergames are serious games that involve physical exertion and are thought of as a form of exercise by using novel input models. Exergames are promising in improving the vestibular differences of children with autism but often lack of adaptation mechanisms that adjust the difficulty level of the exergame. In this paper, we present the design and development of Circus in Motion, a multimodal exergame supporting children with autism with the practice of non-locomotor movements. We describe how the data from a 3D depth camera enables the tracking of non-locomotor movements allowing children to naturally interact with the exergame . A controlled experiment with 12 children with autism shows Circus in Motion excels traditional vestibular therapies in increasing physical activation and the number of movements repetitions. We show how data from real-time usage of Circus in Motion could be used to feed a fuzzy logic model that can adjust the difficulty level of the exergame according to each childs motor performance. We close discussing open challenges and opportunities of multimodal exergames to support motor therapeutic interventions for children with autism in the long-term

    Measuring Brain Activation Patterns from Raw Single-Channel EEG during Exergaming: A Pilot Study

    Get PDF
    Physical and cognitive rehabilitation is deemed crucial to attenuate symptoms and to improve the quality of life in people with neurodegenerative disorders, such as Parkinson's Disease. Among rehabilitation strategies, a novel and popular approach relies on exergaming: the patient performs a motor or cognitive task within an interactive videogame in a virtual environment. These strategies may widely benefit from being tailored to the patient's needs and engagement patterns. In this pilot study, we investigated the ability of a low-cost BCI based on single-channel EEG to measure the user's engagement during an exergame. As a first step, healthy subjects were recruited to assess the system's capability to distinguish between (1) rest and gaming conditions and (2) gaming at different complexity levels, through Machine Learning supervised models. Both EEG and eye-blink features were employed. The results indicate the ability of the exergame to stimulate engagement and the capability of the supervised classification models to distinguish resting stage from game-play(accuracy > 95%). Finally, different clusters of subject responses throughout the game were identified, which could help define models of engagement trends. This result is a starting point in developing an effectively subject-tailored exergaming system

    PhyDSLK: a model-driven framework for generating exergames

    Get PDF
    AbstractIn recent years, we have been witnessing a rapid increase of research on exergames—i.e., computer games that require users to move during gameplay as a form of physical activity and rehabilitation. Properly balancing the need to develop an effective exercise activity with the requirements for a smooth interaction with the software system and an engaging game experience is a challenge. Model-driven software engineering enables the fast prototyping of multiple system variants, which can be very useful for exergame development. In this paper, we propose a framework, PhyDSLK, which eases the development process of personalized and engaging Kinect-based exergames for rehabilitation purposes, providing high-level tools that abstract the technical details of using the Kinect sensor and allows developers to focus on the game design and user experience. The system relies on model-driven software engineering technologies and is made of two main components: (i) an authoring environment relying on a domain-specific language to define the exergame model encapsulating the gameplay that the exergame designer has envisioned and (ii) a code generator that transforms the exergame model into executable code. To validate our approach, we performed a preliminary empirical evaluation addressing development effort and usability of the PhyDSLK framework. The results are promising and provide evidence that people with no experience in game development are able to create exergames with different complexity levels in one hour, after a less-than-two-hour training on PhyDSLK. Also, they consider PhyDSLK usable regardless of the exergame complexity

    Designing for movement quality in exergames: Lessons learned from observing senior citizens playing stepping games

    Get PDF
    -Background: Exergames are increasingly used as an exercise intervention to reduce fall risk in elderly. However, few exergames have been designed specifically for elderly, and we lack knowledge about the characteristics of the movements elicited by exergames and thereby about their potential to train functions important for fall risk reduction. Objective: This study investigates game elements and older players' movement characteristics during stepping exergames in order to inform exergame design for movement quality in the context of fall preventive exercise. Methods: Fourteen senior citizens (mean age 73 years ± 5.7, range 65 - 85) played 3 stepping exergames in a laboratory. Each of the exergames was described with respect to 7 game elements (physical space, sensing hardware technology, game graphics and sound, model of user, avatar/mapping of movements, game mechanism and game narrative). Five movement characteristics (weight shift; variation in step length, speed, and movement direction; visual independency) were scored on a 5-point Likert scale based on video observations of each player and each game. Disagreement between raters was resolved by agreement. Differences in scores for the 3 exergames were analyzed with a multivariate one-way ANOVA. Results: The Mole received the highest sum score and the best score on each of the 5 movement characteristics (all p values <0.0005). LightRace scored the lowest of the 3 exergames on weight shift and variation in movement direction (both p values <0.0005), while DanceDanceRevolution scored lowest on step length variation and visual independency (p < 0.03 and p < 0.0005, respectively), and lower than The Mole on speed variation (p < 0.05). The physical space players used when exergaming and the on-screen representation of the player, affected movement quality positively as indexed by multiple weight shifts and variation in stepping size, direction, and speed. Furthermore, players' movements improved when playing speed-affected game progression and when the game narrative was related to a natural context. Conclusion: Comparing differences in game elements with associated differences in game movement requirements provides valuable insights about how to design for movement quality in exergames. This provided important lessons for the design of exergames for fall-preventive exercise in senior citizens and illustrates the value of including analyses of movement characteristics when designing such exergames

    KINECTWheels: wheelchair-accessible motion-based game interaction

    Get PDF
    The increasing popularity of full-body motion-based video games creates new challenges for game accessibility research. Many games strongly focus on able-bodied persons and require players to move around freely. To address this problem, we introduce KINECTWheels, a toolkit that facilitates the integration of wheelchair-based game input. Our library can help game designers to integrate wheelchair input at the development stage, and it can be configured to trigger keystroke events to make off-the-shelf PC games wheelchair-accessible

    Clinical Decision Support Systems with Game-based Environments, Monitoring Symptoms of Parkinson’s Disease with Exergames

    Get PDF
    Parkinson’s Disease (PD) is a malady caused by progressive neuronal degeneration, deriving in several physical and cognitive symptoms that worsen with time. Like many other chronic diseases, it requires constant monitoring to perform medication and therapeutic adjustments. This is due to the significant variability in PD symptomatology and progress between patients. At the moment, this monitoring requires substantial participation from caregivers and numerous clinic visits. Personal diaries and questionnaires are used as data sources for medication and therapeutic adjustments. The subjectivity in these data sources leads to suboptimal clinical decisions. Therefore, more objective data sources are required to better monitor the progress of individual PD patients. A potential contribution towards more objective monitoring of PD is clinical decision support systems. These systems employ sensors and classification techniques to provide caregivers with objective information for their decision-making. This leads to more objective assessments of patient improvement or deterioration, resulting in better adjusted medication and therapeutic plans. Hereby, the need to encourage patients to actively and regularly provide data for remote monitoring remains a significant challenge. To address this challenge, the goal of this thesis is to combine clinical decision support systems with game-based environments. More specifically, serious games in the form of exergames, active video games that involve physical exercise, shall be used to deliver objective data for PD monitoring and therapy. Exergames increase engagement while combining physical and cognitive tasks. This combination, known as dual-tasking, has been proven to improve rehabilitation outcomes in PD: recent randomized clinical trials on exergame-based rehabilitation in PD show improvements in clinical outcomes that are equal or superior to those of traditional rehabilitation. In this thesis, we present an exergame-based clinical decision support system model to monitor symptoms of PD. This model provides both objective information on PD symptoms and an engaging environment for the patients. The model is elaborated, prototypically implemented and validated in the context of two of the most prominent symptoms of PD: (1) balance and gait, as well as (2) hand tremor and slowness of movement (bradykinesia). While balance and gait affections increase the risk of falling, hand tremors and bradykinesia affect hand dexterity. We employ Wii Balance Boards and Leap Motion sensors, and digitalize aspects of current clinical standards used to assess PD symptoms. In addition, we present two dual-tasking exergames: PDDanceCity for balance and gait, and PDPuzzleTable for tremor and bradykinesia. We evaluate the capability of our system for assessing the risk of falling and the severity of tremor in comparison with clinical standards. We also explore the statistical significance and effect size of the data we collect from PD patients and healthy controls. We demonstrate that the presented approach can predict an increased risk of falling and estimate tremor severity. Also, the target population shows a good acceptance of PDDanceCity and PDPuzzleTable. In summary, our results indicate a clear feasibility to implement this system for PD. Nevertheless, long-term randomized clinical trials are required to evaluate the potential of PDDanceCity and PDPuzzleTable for physical and cognitive rehabilitation effects

    Custom-designed motion-based games for older adults: a review of literature in human-computer interaction

    Get PDF
    Many older adults, particularly persons living in senior residences and care homes, lead sedentary lifestyles, which reduces their life expectancy. Motion-based video games encourage physical activity and might be an opportunity for these adults to remain active and engaged; however, research efforts in the field have frequently focused on younger audiences and little is known about the requirements and benefits of motion-based games for elderly players. In this paper, we present an overview of motion-based video games and other interactive technologies for older adults. First, we summarize existing approaches towards the definition of motion-based video games – often referred to as exergames – and suggest a categorization of motion-based applications into active video games, exergames, and augmented sports. Second, we use this scheme to classify case studies addressing design efforts particularly directed towards older adults. Third, we analyze these case studies with a focus on potential target audiences, benefits, challenges in their deployment, and future design opportunities to investigate whether motion-based video games can be applied to encourage physical activity among older adults. In this context, special attention is paid to evaluation routines and their implications regarding the deployment of such games in the daily lives of older adults. The results show that many case studies examine isolated aspects of motion-based game design for older adults, and despite the broad range of issues in motion-based interaction for older adults covered by the sum of all research projects, there appears to be a disconnect between laboratory-based research and the deployment of motion-based video games in the daily lives of senior citizens. Our literature review suggests that despite research results suggesting various benefits of motion-based play for older adults, most work in the field of game design for senior citizens has focused on the implementation of accessible user interfaces, and that little is known about the long-term deployment of video games for this audience, which is a crucial step if these games are to be implemented in activity programs of senior residences, care homes, or in therapy

    An Internet- and Kinect-Based Multiple Sclerosis Fitness Intervention Training With Pilates Exercises: Development and Usability Study

    Get PDF
    background: balance impairments are common in people with multiple sclerosis (MS), with reduced ability to maintain position and delayed responses to postural adjustments. Pilates is a popular alternative method for balance training that may reduce the rapid worsening of symptoms and the increased risk of secondary conditions (eg, depression) that are frequently associated with physical inactivity.objective: In this paper, we aimed to describe the design, development, and usability testing of MS Fitness Intervention Training (MS-FIT), a Kinect-based tool implementing Pilates exercises customized for MS. methods: MS-FIT has been developed using a user-centered design approach (design, prototype, user feedback, and analysis) to gain the target user's perspective. a team composed of 1 physical therapist, 2 game programmers, and 1 game designer developed the first version of MS-FIT that integrated the knowledge and experience of the team with MS literature findings related to pilates exercises and balance interventions based on exergames. MS-FIT, developed by using the Unity 3D (Unity Technologies) game engine software with kinect Sensor V2 for Windows, implements exercises for breathing, posture, and balance. Feedback from an Italian panel of experts in MS rehabilitation (neurologists, physiatrists, physical therapists, 1 statistician, and 1 bioengineer) and people with MS was collected to customize the tool for use in MS. The context of MS-FIT is traveling around the world to visit some of the most important cities to learn the aspects of their culture through pictures and stories. At each stay of the travel, the avatar of a Pilates teacher shows the user the exercises to be performed. Overall, 9 people with MS (n=4, 44% women; mean age 42.89, SD 11.97 years; mean disease duration 10.19, SD 9.18 years; Expanded Disability Status Scale score 3.17, SD 0.75) were involved in 3 outpatient user test sessions of 30 minutes; MS-FIT's usability was assessed through an ad hoc questionnaire (maximum value=5; higher the score, higher the usability) evaluating easiness to use, playability, enjoyment, satisfaction, and acceptance.Results: A user-centered design approach was used to develop an accessible and challenging tool for balance training. all people with MS (9/9, 100%) completed the user test sessions and answered the ad hoc questionnaire. the average score on each item ranged from 3.78 (SD 0.67) to 4.33 (SD 1.00), which indicated a high usability level. The feedback and suggestions provided by 64% (9/14) of people with MS and 36% (5/14) of therapists involved in the user test were implemented to refine the first prototype to release MS-FIT 2.0. Conclusions: The participants reported that MS-FIT was a usable tool. It is a promising system for enhancing the motivation and engagement of people with MS in performing exercise with the aim of improving their physical status

    Understanding older adults’ perceptions of and attitudes towards exergames

    Get PDF
    Purpose Maintaining physical activity is a key component of successful aging and has benefits for both physical and cognitive functioning in the older adult population. One promising method for engaging in physical activity is through exergames, which are video games designed to promote exercise. Exergames have the potential to be used by a wide range of people, including older adults, in a variety of settings, such as at home, in community living environments, or senior centers. However, exergames have not been designed for older adults (e.g., with respect to their attitudes, needs). Thus, older adults may not adopt these systems if they perceive them as not useful or relevant to them. Method Twenty older adults (aged 60-79) interacted with two exergames, and were then interviewed about their perceptions of the system’s ease of use and usefulness, as well as their general attitudes towards the system. Results Participants identified the potential for exergames’ usefulness for various goals, such as to increase their physical activity. However, they also reported negative attitudes concerning the system, including perceiving barriers to system use. Overall, participants said they would use the system in the future and recommend it to other people at their age for improving health, despite these use challenges. Conclusion The older adults were open to adopting exergames, which could provide opportunities to increase physical activity. Given the participants’ overall positive perceptions of the usefulness of exergames, designers must address the perceived challenges of using these systems. Understanding barriers and facilitators for older adults’ use of exergames can guide design, training, and adoption of these systems
    • …
    corecore