85,506 research outputs found

    Two ways to Grid: the contribution of Open Grid Services Architecture (OGSA) mechanisms to service-centric and resource-centric lifecycles

    Get PDF
    Service Oriented Architectures (SOAs) support service lifecycle tasks, including Development, Deployment, Discovery and Use. We observe that there are two disparate ways to use Grid SOAs such as the Open Grid Services Architecture (OGSA) as exemplified in the Globus Toolkit (GT3/4). One is a traditional enterprise SOA use where end-user services are developed, deployed and resourced behind firewalls, for use by external consumers: a service-centric (or ‘first-order’) approach. The other supports end-user development, deployment, and resourcing of applications across organizations via the use of execution and resource management services: A Resource-centric (or ‘second-order’) approach. We analyze and compare the two approaches using a combination of empirical experiments and an architectural evaluation methodology (scenario, mechanism, and quality attributes) to reveal common and distinct strengths and weaknesses. The impact of potential improvements (which are likely to be manifested by GT4) is estimated, and opportunities for alternative architectures and technologies explored. We conclude by investigating if the two approaches can be converged or combined, and if they are compatible on shared resources

    The NorduGrid architecture and tools

    Full text link
    The NorduGrid project designed a Grid architecture with the primary goal to meet the requirements of production tasks of the LHC experiments. While it is meant to be a rather generic Grid system, it puts emphasis on batch processing suitable for problems encountered in High Energy Physics. The NorduGrid architecture implementation uses the \globus{} as the foundation for various components, developed by the project. While introducing new services, the NorduGrid does not modify the Globus tools, such that the two can eventually co-exist. The NorduGrid topology is decentralized, avoiding a single point of failure. The NorduGrid architecture is thus a light-weight, non-invasive and dynamic one, while robust and scalable, capable of meeting most challenging tasks of High Energy Physics.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages,LaTeX, 4 figures. PSN MOAT00

    Design Architecture-Based on Web Server and Application Cluster in Cloud Environment

    Full text link
    Cloud has been a computational and storage solution for many data centric organizations. The problem today those organizations are facing from the cloud is in data searching in an efficient manner. A framework is required to distribute the work of searching and fetching from thousands of computers. The data in HDFS is scattered and needs lots of time to retrieve. The major idea is to design a web server in the map phase using the jetty web server which will give a fast and efficient way of searching data in MapReduce paradigm. For real time processing on Hadoop, a searchable mechanism is implemented in HDFS by creating a multilevel index in web server with multi-level index keys. The web server uses to handle traffic throughput. By web clustering technology we can improve the application performance. To keep the work down, the load balancer should automatically be able to distribute load to the newly added nodes in the server

    Corpus access for beginners: the W3Corpora project

    Get PDF

    Logging and bookkeeping, Administrator's guide

    Get PDF
    Logging and Bookkeeping (LB for short) is a Grid service that keeps a short-term trace of Grid jobs as they are processed by individual Grid component

    A framework for P2P application development

    Get PDF
    Although Peer-to-Peer (P2P) computing has become increasingly popular over recent years, there still exist only a very small number of application domains that have exploited it on a large scale. This can be attributed to a number of reasons including the rapid evolution of P2P technologies, coupled with their often-complex nature. This paper describes an implemented abstraction framework that seeks to aid developers in building P2P applications. A selection of example P2P applications that have been developed using this framework are also presented
    corecore