5 research outputs found

    Fast, uniform, and compact scalar multiplication for elliptic curves and genus 2 Jacobians with applications to signature schemes

    Get PDF
    We give a general framework for uniform, constant-time one-and two-dimensional scalar multiplication algorithms for elliptic curves and Jacobians of genus 2 curves that operate by projecting to the x-line or Kummer surface, where we can exploit faster and more uniform pseudomultiplication, before recovering the proper "signed" output back on the curve or Jacobian. This extends the work of L{\'o}pez and Dahab, Okeya and Sakurai, and Brier and Joye to genus 2, and also to two-dimensional scalar multiplication. Our results show that many existing fast pseudomultiplication implementations (hitherto limited to applications in Diffie--Hellman key exchange) can be wrapped with simple and efficient pre-and post-computations to yield competitive full scalar multiplication algorithms, ready for use in more general discrete logarithm-based cryptosystems, including signature schemes. This is especially interesting for genus 2, where Kummer surfaces can outperform comparable elliptic curve systems. As an example, we construct an instance of the Schnorr signature scheme driven by Kummer surface arithmetic

    Lightweight Swarm Authentication

    Get PDF
    In this paper we describe a provably secure authentication protocol for resource limited devices. The proposed algorithm performs whole-network authentication using very few rounds and in a time logarithmic in the number of nodes. Compared to one-to-one node authentication and previous proposals, our protocol is more efficient: it requires less communication and computation and, in turn, lower energy consumption

    Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on Protocols using Diffie-Hellman

    Get PDF
    Diffie-Hellman groups are a widely used component in cryptographic protocols in which a shared secret is needed. These protocols are typically proven to be secure under the assumption they are implemented with prime order Diffie Hellman groups. However, in practice, many implementations either choose to use non-prime order groups for reasons of efficiency, or can be manipulated into operating in non-prime order groups. This leaves a gap between the proofs of protocol security, which assume prime order groups, and the real world implementations. This is not merely a theoretical possibility: many attacks exploiting small subgroups or invalid curve points have been found in the real world. While many advances have been made in automated protocol analysis, modern tools such as Tamarin and ProVerif represent DH groups using an abstraction of prime order groups. This means they, like many cryptographic proofs, may miss practical attacks on real world protocols. In this work we develop a novel extension of the symbolic model of Diffie-Hellman groups. By more accurately modelling internal group structure, our approach captures many more differences between prime order groups and their actual implementations. The additional behaviours that our models capture are surprisingly diverse, and include not only attacks using small subgroups and invalid curve points, but also a range of proposed mitigation techniques, such as excluding low order elements, single coordinate ladders, and checking the elliptic curve equation. Our models thereby capture a large family of attacks that were previously outside the symbolic model. We implement our improved models in the Tamarin prover. We find a new attack on the Secure Scuttlebutt Gossip protocol, independently discover a recent attack on Tendermint’s secure handshake, and evaluate the effectiveness of the proposed mitigations for recent Bluetooth attacks

    Quantum State Estimation and Symmetric Informationally Complete POMs

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore