265 research outputs found

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems

    Get PDF
    Although internal devices (e.g., memory, timers) and external devices (e.g., transceivers, sensors) significantly contribute to the energy consumption of an embedded real-time system, their impact on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken into account. Most WCRE analysis techniques, for example, only focus on the processor and therefore do not consider the energy consumption of other hardware units. Apart from that, the typical approach for dealing with devices is to assume that all of them are always activated, which leads to high WCRE overestimations in the general case where a system switches off the devices that are currently not needed in order to minimize energy consumption. In this paper, we present SysWCEC, an approach that addresses these problems by enabling static WCRE analysis for entire real-time systems, including internal as well as external devices. For this purpose, SysWCEC introduces a novel abstraction, the power-state-transition graph, which contains information about the worst-case energy consumption of all possible execution paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks during which the set of active devices in the system does not change and is consequently able to precisely handle devices being dynamically activated or deactivated

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Augmented interaction for custom-fit products by means of interaction devices at low costs

    Get PDF
    This Ph.D thesis refers to a research project that aims at developing an innovative platform to design lower limb prosthesis (both for below and above knee amputation) centered on the virtual model of the amputee and based on a computer-aided and knowledge-guided approach. The attention has been put on the modeling tool of the socket, which is the most critical component of the whole prosthesis. The main aim has been to redesign and develop a new prosthetic CAD tool, named SMA2 (Socket Modelling Assistant2) exploiting a low-cost IT technologies (e.g. hand/finger tracking devices) and making the user’s interaction as much as possible natural and similar to the hand-made manipulation. The research activities have been carried out in six phases as described in the following. First, limits and criticalities of the already available modeling tool (namely SMA) have been identified. To this end, the first version of SMA has been tested with Ortopedia Panini and the orthopedic research group of Salford University in Manchester with real case studies. Main criticalities were related to: (i) automatic reconstruction of the residuum geometric model starting from medical images, (ii) performance of virtual modeling tools to generate the socket shape, and (iii) interaction mainly based on traditional devices (e.g., mouse and keyboard). The second phase lead to the software reengineering of SMA according to the limits identified in the first phase. The software architecture has been re-designed adopting an object-oriented paradigm and its modularity permits to remove or add new features in a very simple way. The new modeling system, i.e. SMA2, has been totally implemented using open source Software Development Kit-SDK (e.g., Visualization ToolKit VTK, OpenCASCADE and Qt SDK) and based on low cost technology. It includes: • A new module to automatically reconstruct the 3D model of the residual limb from MRI images. In addition, a new procedure based on low-cost technology, such as Microsoft Kinect V2 sensor, has been identified to acquire the 3D external shape of the residuum. • An open source software library, named SimplyNURBS, for NURBS modeling and specifically used for the automatic reconstruction of the residuum 3D model from medical images. Even if, SimplyNURBS has been conceived for the prosthetic domain, it can be used to develop NURBS-based modeling tools for a range of applicative domains from health-care to clothing design. • A module for mesh editing to emulate the hand-made operations carried out by orthopedic technicians during traditional socket manufacturing process. In addition several virtual widgets have been implemented to make available virtual tools similar to the real ones used by the prosthetist, such as tape measure and pencil. • A Natural User Interface (NUI) to allow the interaction with the residuum and socket models using hand-tracking and haptic devices. • A module to generate the geometric models for additive manufacturing of the socket. The third phase concerned the study and design of augmented interaction with particular attention to the Natural User Interface (NUI) for the use of hand-tracking and haptic devices into SMA2. The NUI is based on the use of the Leap Motion device. A set of gestures, mainly iconic and suitable for the considered domain, has been identified taking into account ergonomic issues (e.g., arm posture) and ease of use. The modularity of SMA2 permits us to easily generate the software interface for each device for augmented interaction. To this end, a software module, named Tracking plug-in, has been developed to automatically generate the source code of software interfaces for managing the interaction with low cost hand-tracking devices (e.g., Leap Motion and Intel Gesture Camera) and replicate/emulate manual operations usually performed to design custom-fit products, such medical devices and garments. Regarding haptic rendering, two different devices have been considered, the Falcon Novint, and a haptic mouse developed in-house. In the fourth phase, additive manufacturing technologies have been investigated, in particular FDM one. 3D printing has been exploited in order to permit the creation of trial sockets in laboratory to evaluate the potentiality of SMA2. Furthermore, research activities have been done to study new ways to design the socket. An innovative way to build the socket has been developed based on multi-material 3D printing. Taking advantage of flexible material and multi-material print possibility, new 3D printers permit to create object with soft and hard parts. In this phase, issues about infill, materials and comfort have been faced and solved considering different compositions of materials to re-design the socket shape. In the fifth phase the implemented solution, integrated within the whole prosthesis design platform, has been tested with a transfemoral amputee. Following activities have been performed: • 3D acquisition of the residuum using MRI and commercial 3D scanning systems (low cost and professional). • Creation of the residual limb and socket geometry. • Multi-material 3D printing of the socket using FDM technology. • Gait analysis of the amputee wearing the socket using a markerless motion capture system. • Acquisition of contact pressure between residual limb and a trial socket by means of Teskan’s F-Socket System. Acquired data have been combined inside an ad-hoc developed application, which permits to simultaneously visualize pressure data on the 3D model of the residual lower limb and the animation of gait analysis. Results and feedback have been possible thanks to this application that permits to find correlation between several phases of the gait cycle and the pressure data at the same time. Reached results have been considered very interested and several tests have been planned in order to try the system in orthopedic laboratories in real cases. The reached results have been very useful to evaluate the quality of SMA2 as a future instruments that can be exploited for orthopedic technicians in order to create real socket for patients. The solution has the potentiality to begin a potential commercial product, which will be able to substitute the classic procedure for socket design. The sixth phase concerned the evolution of SMA2 as a Mixed Reality environment, named Virtual Orthopedic LABoratory (VOLAB). The proposed solution is based on low cost devices and open source libraries (e.g., OpenCL and VTK). In particular, the hardware architecture consists of three Microsoft Kinect v2 for human body tracking, the head mounted display Oculus Rift SDK 2 for 3D environment rendering, and the Leap Motion device for hand/fingers tracking. The software development has been based on the modular structure of SMA2 and dedicated modules have been developed to guarantee the communication among the devices. At present, two preliminary tests have been carried out: the first to verify real-time performance of the virtual environment and the second one to verify the augmented interaction with hands using SMA2 modeling tools. Achieved results are very promising but, highlighted some limitations of this first version of VOLAB and improvements are necessary. For example, the quality of the 3D real world reconstruction, especially as far as concern the residual limb, could be improved by using two HD-RGB cameras together the Oculus Rift. To conclude, the obtained results have been evaluated very interested and encouraging from the technical staff of orthopedic laboratory. SMA2 will made possible an important change of the process to design the socket of lower limb prosthesis, from a traditional hand-made manufacturing process to a totally virtual knowledge-guided process. The proposed solutions and results reached so far can be exploited in other industrial sectors where the final product heavily depends on the human body morphology. In fact, preliminary software development has been done to create a virtual environment for clothing design by starting from the basic modules exploited in SMA2

    Instability and nonlinear equilibration of baroclinic flows

    Get PDF
    Baroclinic instability, the fundamental mechanism underlying the generation of baroclinic eddies in the atmosphere and ocean is investigated in the two-layer, quasi-geostrophic model. The aim is to bridge the gap in understanding between analytical theories and high resolution numerical simulations of more realistic flows. In chapter 1 the physical motivation for the problems, two-layer model and numerical scheme are introduced. In chapter 2, the instability of a uniform flow profile without Ekman friction is investigated. The success of a weakly nonlinear theory due to Warn & Gauthier at finite criticality is assessed over the full parameter space. The relevance of nonlinear bounds on wave amplitude and perturbation energy due to Shepherd is also evaluated. Chapters 3 and 4 investigate the Holopainen instability, whereby a uniform flow profile, otherwise stable in frictionless flow, is destabilized by the addition of a small amount of Ekman friction. In chapter 3, the physical mechanisms of the baroclinic and Holopainen instabilities are contrasted in terms of potential vorticity disturbances. The instability of the Eady model is also discussed. In chapter 4, a weakly nonlinear theory due to Romea is shown to be accurate for flows unstable to the Holopainen instability and flows unstable to baroclinic instability in the presence of significant Ekman friction. An intermediate flow region is found where Warn & Gauthier’s theory is accurate at early times, but the final state is well predicted by Romea’s theory. The equilibration of an unstable baroclinic jet is investigated in chapter 5. A predictive theory due to Esler based on global constraints is extended to test two new hypotheses, which are also shown to be successful in predicting the equilibrated flow profile of initially symmetric jets. The theory is adapted to include asymmetric initial jets where each hypothesis is found to have limited quantitative success

    Fehlertolerante Mehrkernprozessoren fĂĽr gemischt-kritische Echtzeitsysteme

    Get PDF
    Current and future computing systems must be appropriately designed to cope with random hardware faults in order to provide a dependable service and correct functionality. Dependability has many facets to be addressed when designing a system and that is specially challenging in mixed-critical real-time systems, where safety standards play an important role and where responding in time can be as important as responding correctly or even responding at all. The thesis addresses the dependability of mixed-critical real-time systems, considering three important requirements: integrity, resilience and real-time. More specifically, it looks into the architectural and performance aspects of achieving dependability, concentrating its scope on error detection and handling in hardware -- more specifically in the Network-on-Chip (NoC), the backbone of modern MPSoC -- and on the performance of error handling and recovery in software. The thesis starts by looking at the impacts of random hardware faults on the NoC and on the system, with special focus on soft errors. Then, it addresses the uncovered weaknesses in the NoC by proposing a resilient NoC for mixed-critical real-time systems that is able to provide a highly reliable service with transparent protection for the applications. Formal communication time analysis is provided with common ARQ protocols modeled for NoCs and including a novel ARQ-based protocol optimized for DMAs. After addressing the efficient use of ARQ-based protocols in NoCs, the thesis proposes the Advanced Integrity Q-service (AIQ), a low-overhead mechanism to achieve integrity and real-time guarantees of NoC transactions on an End-to-End (E2E) basis. Inspired by transactions in distributed systems, the mechanism differs from the previous approach in that it does not provide error recovery in hardware but delegates the task to software, making use of existing functionality in cross-layer fault-tolerance solutions. Finally, the thesis addresses error handling in software as seen in cross-layer approaches. It addresses the performance of replicated software execution in many-core platforms. Replicated software execution provides protection to the system against random hardware faults. It relies on hardware-supported error detection and error handling in software. The replica-aware co-scheduling is proposed to achieve high performance with replicated execution, which is not possible with standard real-time schedulers.Um einen zuverlässigen Betrieb und korrekte Funktionalität zu gewährleisten, müssen aktuelle und zukünftige Computersysteme so ausgelegt werden, dass sie mit diesen Fehlern umgehen können. Zuverlässigkeit hat viele Aspekte, die bei der Entwicklung eines Systems berücksichtigt werden müssen. Das gilt insbesondere für Echtzeitsysteme mit gemischter Kritikalität, bei denen Sicherheitsstandards, die ein korrektes und rechtzeitiges Verhalten fordern, eine wichtige Rolle spielen. Diese Dissertation befasst sich mit der Zuverlässigkeit von gemischt-kritischen Echtzeitsystemen unter Berücksichtigung von drei wichtigen Anforderungen: Integrität, Resilienz und Echtzeit. Genauer gesagt, behandelt sie Architektur- und Leistungsaspekte die notwendig sind um Zuverlässigkeit zu erreichen, wobei der Schwerpunkt auf der Fehlererkennung und -behandlung in der Hardware – genauer gesagt im Network-on-Chip (NoC), dem Rückgrat des modernen MPSoC – und auf der Leistung der Fehlerbehandlung und -behebung in der Software liegt. Die Arbeit beginnt mit der Untersuchung der Auswirkung von zufälligen Hardwarefehlern auf das NoC und das System, wobei der Schwerpunkt auf weichen Fehler (soft errors) liegt. Anschließend werden die aufgedeckten Schwachstellen im NoC behoben, indem ein widerstandsfähiges NoC für gemischt-kritische Echtzeitsysteme vorgeschlagen wird, das in der Lage ist, einen höchst zuverlässigen Betrieb mit transparentem Schutz für die Anwendungen zu bieten. Nach der Auseinandersetzung mit der effizienten Nutzung von ARQ-basierten Protokolle in NoCs, wird der Advanced Integrity Q-Service (AIQ) vorgestellt, der ein Mechanismus mit geringem Overhead ist, um Integrität und Echtzeit-Garantien von NoC-Transaktionen auf Ende-zu-Ende (E2E)-Basis zu erreichen. Inspiriert von Transaktionen in verteilten Systemen unterscheidet sich der Mechanismus vom bisherigen Konzept dadurch, dass er keine Fehlerbehebung in der Hardware vorsieht, sondern diese Aufgabe an die Software delegiert. Schließlich befasst sich die Dissertation mit der Fehlerbehandlung in Software, wie sie in schichtübergreifenden Methoden zu sehen ist. Sie behandelt die Leistung der replizierten Software-Ausführung in Many-Core-Plattformen. Es setzt auf hardwaregestützte Fehlererkennung und Fehlerbehandlung in der Software. Das Replika-bewusste Co-Scheduling wird vorgeschlagen, um eine hohe Performance bei replizierter Ausführung zu erreichen, was mit Standard-Echtzeit-Schedulern nicht möglich ist

    Synthetic models of distribution gas networks in low-carbon energy systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Mixed Criticality Systems - A Review : (13th Edition, February 2022)

    Get PDF
    This review covers research on the topic of mixed criticality systems that has been published since Vestal’s 2007 paper. It covers the period up to end of 2021. The review is organised into the following topics: introduction and motivation, models, single processor analysis (including job-based, hard and soft tasks, fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, related topics, realistic models, formal treatments, systems issues, industrial practice and research beyond mixed-criticality. A list of PhDs awarded for research relating to mixed-criticality systems is also included
    • …
    corecore