1,532 research outputs found

    UWB system and algorithms for indoor positioning

    Get PDF
    This research work presents of study of ultra-wide band (UWB) indoor positioning considering different type of obstacles that can affect the localization accuracy. In the actual warehouse, a variety of obstacles including metal, board, worker and other obstacles will have NLOS (non-line-of-sight) impact on the positioning of the logistics package, which influence the measurement of the distance between the logistics package and the anchor , thereby affecting positioning accuracy. A new developed method attempts to improve the accuracy of UWB indoor positioning, through and improved positioning algorithm and filtering algorithm. In this project, simulate the warehouse environment in the laboratory, several simulation proves that the used Kalman filter algorithm and Markov algorithm can effectively reduce the error of NLOS. Experimental validation is carried out considering a mobile tag mounted on a robot platform.Este trabalho de pesquisa apresenta um estudo de posicionamento de banda ultra-larga (UWB) em ambientes internos considerando diferentes tipos de obstáculos que podem afetar a precisão de localização. No armazém real, uma variedade de obstáculos incluindo metal, placa, trabalhador e outros obstáculos terão impacto NLOS (não linha de visão) no posicionamento do pacote logístico, o que influencia a medição da distância entre o pacote logístico e a âncora, afetando assim a precisão do posicionamento. Um novo método desenvolvido tenta melhorar a precisão do posicionamento interno UWB, através de um algoritmo de posicionamento e algoritmo de filtragem aprimorados. Neste projeto, para simular o ambiente de warehouse em laboratório, diversas simulações comprovam que o algoritmo de filtro de Kalman e o algoritmo de Markov usados podem efetivamente reduzir o erro de NLOS. A validação experimental é realizada considerando um tag móvel montado em uma plataforma de robô

    Development and application of dynamic models for predicting transit arrival times

    Get PDF
    Stochastic variations in traffic conditions and ridership often have a negative impact in transit operations resulting in the deterioration of schedule/headway adherence and lengthening of passenger wait times. Providing accurate information on transit vehicle arrival times is critical to reduce the negative impacts on transit users. In this study, models for dynamically predicting transit arrival times in urban settings are developed, including a basic model, a Kalman filtering model, link-based and stop-based artificial neural networks (ANNs) and Neural/Dynamic (ND) models. The reliability of these models is assessed by enhancing the microscopic simulation program CORSIM which can calculate bus dwell and passenger wait times based on time-dependent passenger demands and vehicle inter-departure times (headways) at stops. The proposed prediction models are integrated with the enhanced CORSIM individually to predict bus arrival times while simulating the operations of a bus transit route in New Jersey. The reliability analysis of prediction results demonstrates that ANNs are superior to the basic and Kalman filtering models. The stop-based ANN generally predicts more accurately than the link-based ANN. By integrating an ANN (either link-based or stop-based) with the Kalman filtering algorithm, two ND models (NDL and NDS) are developed to decrease prediction error. The results show that the performance of the ND models is fairly close. The NDS model performs better than the NDL model when stop-spacing is relatively long and the number of intersections between a pair of stops is relatively large. In the study, an application of the proposed prediction models to a real-time headway control model is also explored and experimented through simulating a high frequency light rail transit route. The results show that with the accurate prediction of vehicle arrival information from the proposed models, the regularity of headways between any pair of consecutive operating vehicles is improved, while the average passenger wait times at stops are reduced significantly

    Comparative Analysis of Different Classes of On-line State Estimators for Aerodynamics Angles and True Airspeed Sensors for Applications to the Sensor Failure Problem

    Get PDF
    Throughout aviation history, there have been numerous incidents due to sensor failure that have caused a range of issues from loss of control of the aircraft to crashes resulting in loss of human life. Although there are many hardware-based solutions to this problem, the threat of control hardware failure still exists. This work investigates the efficacy of implementing neural networks (NN) and Kalman filters (KF) to solve the accommodation portion of the sensor failure detection, identification, and accommodation (SFDIA) problem through on-line real-time estimation of specific aircraft dynamic parameters. The implementation of on-line estimation architectures into the aircraft flight control system provides multiple advantages such as cost effectiveness and drastic decrease in weight. The multilayer perceptron (MLP) NN, extended minimal resource allocation (neural) network (EMRAN), extended KF (EKF), and unscented KF (UKF) have been evaluated in this effort for the purpose of providing analytical redundancy (AR) for estimating the parameter of the ‘failed’ sensor in lieu of physical redundancy. Each NN-based and KF-based estimator was compared using preset criteria including estimation accuracy, time to perform, and complexity of the model. The overall results have shown that the NN-based sensor failure accommodation (SFA) schemes outperform the KF-based SFA schemes with no undetected faults nor false alarms and significantly smaller estimation errors. More specifically, the EMRAN-based neural estimator has the best performance of all four schemes followed by the MLP NN, UKF, and EKF, respectively. This research shows the great potential of analytical redundancy-based approaches as opposed to physical or hardware redundancy to improved aviation safety for preventing future crashes due to sensor failures

    Development of Advanced Verification and Validation Procedures and Tools for the Certification of Learning Systems in Aerospace Applications

    Get PDF
    Adaptive control technologies that incorporate learning algorithms have been proposed to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments. In order for adaptive control systems to be used in safety-critical aerospace applications, they must be proven to be highly safe and reliable. Rigorous methods for adaptive software verification and validation must be developed to ensure that control system software failures will not occur. Of central importance in this regard is the need to establish reliable methods that guarantee convergent learning, rapid convergence (learning) rate, and algorithm stability. This paper presents the major problems of adaptive control systems that use learning to improve performance. The paper then presents the major procedures and tools presently developed or currently being developed to enable the verification, validation, and ultimate certification of these adaptive control systems. These technologies include the application of automated program analysis methods, techniques to improve the learning process, analytical methods to verify stability, methods to automatically synthesize code, simulation and test methods, and tools to provide on-line software assurance

    Neural-Kalman Schemes for Non-Stationary Channel Tracking and Learning

    Get PDF
    This Thesis focuses on channel tracking in Orthogonal Frequency-Division Multiplexing (OFDM), a widely-used method of data transmission in wireless communications, when abrupt changes occur in the channel. In highly mobile applications, new dynamics appear that might make channel tracking non-stationary, e.g. channels might vary with location, and location rapidly varies with time. Simple examples might be the di erent channel dynamics a train receiver faces when it is close to a station vs. crossing a bridge vs. entering a tunnel, or a car receiver in a route that grows more tra c-dense. Some of these dynamics can be modelled as channel taps dying or being reborn, and so tap birth-death detection is of the essence. In order to improve the quality of communications, we delved into mathematical methods to detect such abrupt changes in the channel, such as the mathematical areas of Sequential Analysis/ Abrupt Change Detection and Random Set Theory (RST), as well as the engineering advances in Neural Network schemes. This knowledge helped us nd a solution to the problem of abrupt change detection by informing and inspiring the creation of low-complexity implementations for real-world channel tracking. In particular, two such novel trackers were created: the Simpli- ed Maximum A Posteriori (SMAP) and the Neural-Network-switched Kalman Filtering (NNKF) schemes. The SMAP is a computationally inexpensive, threshold-based abrupt-change detector. It applies the three following heuristics for tap birth-death detection: a) detect death if the tap gain jumps into approximately zero (memoryless detection); b) detect death if the tap gain has slowly converged into approximately zero (memory detection); c) detect birth if the tap gain is far from zero. The precise parameters for these three simple rules can be approximated with simple theoretical derivations and then ne-tuned through extensive simulations. The status detector for each tap using only these three computationally inexpensive threshold comparisons achieves an error reduction matching that of a close-to-perfect path death/birth detection, as shown in simulations. This estimator was shown to greatly reduce channel tracking error in the target Signal-to-Noise Ratio (SNR) range at a very small computational cost, thus outperforming previously known systems. The underlying RST framework for the SMAP was then extended to combined death/birth and SNR detection when SNR is dynamical and may drift. We analyzed how di erent quasi-ideal SNR detectors a ect the SMAP-enhanced Kalman tracker's performance. Simulations showed SMAP is robust to SNR drift in simulations, although it was also shown to bene t from an accurate SNR detection. The core idea behind the second novel tracker, NNKFs, is similar to the SMAP, but now the tap birth/death detection will be performed via an arti cial neuronal network (NN). Simulations show that the proposed NNKF estimator provides extremely good performance, practically identical to a detector with 100% accuracy. These proposed Neural-Kalman schemes can work as novel trackers for multipath channels, since they are robust to wide variations in the probabilities of tap birth and death. Such robustness suggests a single, low-complexity NNKF could be reusable over di erent tap indices and communication environments. Furthermore, a di erent kind of abrupt change was proposed and analyzed: energy shifts from one channel tap to adjacent taps (partial tap lateral hops). This Thesis also discusses how to model, detect and track such changes, providing a geometric justi cation for this and additional non-stationary dynamics in vehicular situations, such as road scenarios where re ections on trucks and vans are involved, or the visual appearance/disappearance of drone swarms. An extensive literature review of empirically-backed abrupt-change dynamics in channel modelling/measuring campaigns is included. For this generalized framework of abrupt channel changes that includes partial tap lateral hopping, a neural detector for lateral hops with large energy transfers is introduced. Simulation results suggest the proposed NN architecture might be a feasible lateral hop detector, suitable for integration in NNKF schemes. Finally, the newly found understanding of abrupt changes and the interactions between Kalman lters and neural networks is leveraged to analyze the neural consequences of abrupt changes and brie y sketch a novel, abrupt-change-derived stochastic model for neural intelligence, extract some neuro nancial consequences of unstereotyped abrupt dynamics, and propose a new portfolio-building mechanism in nance: Highly Leveraged Abrupt Bets Against Failing Experts (HLABAFEOs). Some communication-engineering-relevant topics, such as a Bayesian stochastic stereotyper for hopping Linear Gauss-Markov (LGM) models, are discussed in the process. The forecasting problem in the presence of expert disagreements is illustrated with a hopping LGM model and a novel structure for a Bayesian stereotyper is introduced that might eventually solve such problems through bio-inspired, neuroscienti cally-backed mechanisms, like dreaming and surprise (biological Neural-Kalman). A generalized framework for abrupt changes and expert disagreements was introduced with the novel concept of Neural-Kalman Phenomena. This Thesis suggests mathematical (Neural-Kalman Problem Category Conjecture), neuro-evolutionary and social reasons why Neural-Kalman Phenomena might exist and found signi cant evidence for their existence in the areas of neuroscience and nance. Apart from providing speci c examples, practical guidelines and historical (out)performance for some HLABAFEO investing portfolios, this multidisciplinary research suggests that a Neural- Kalman architecture for ever granular stereotyping providing a practical solution for continual learning in the presence of unstereotyped abrupt dynamics would be extremely useful in communications and other continual learning tasks.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Luis Castedo Ribas.- Secretaria: Ana García Armada.- Vocal: José Antonio Portilla Figuera

    Learning Nonlinear Functions with MLPs and SRNs

    Get PDF
    In this paper, nonlinear functions generated by randomly initialized multilayer perceptrons (MLPs) and simultaneous recurrent neural networks (SRNs) are learned by MLPs and SRNs. Training SRNs is a challenging task and a new learning algorithm - DEPSO is introduced. DEPSO is a standard particle swarm optimization (PSO) algorithm with the addition of a differential evolution step to aid in swarm convergence. The results from DEPSO are compared with the standard backpropagation (BP) and PSO algorithms. It is further verified that functions generated by SRNs are harder to learn than those generated by MLPs but DEPSO provides better learning capabilities for the functions generated by MLPs and SRNs as compared to BP and PSO. These three algorithms are also trained on several benchmark functions to confirm results

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique
    corecore