1,407 research outputs found

    Embedded Model Control calls for disturbance modeling and rejection

    Get PDF
    Robust control design is mainly devoted to guaranteeing the closed-loop stability of a model-based control law in the presence of parametric uncertainties. The control law is usually a static feedback law which is derived from a (nonlinear) model using different methodologies. From this standpoint, stability can only be guaranteed by introducing some ignorance coefficients and restricting the feedback control effort with respect to the model-based design. Embedded Model Control shows that, the model-based control law must and can be kept intact in the case of uncertainty, if, under certain conditions, the controllable dynamics is complemented by suitable disturbance dynamics capable of real-time encoding the different uncertainties affecting the ‘embedded model', i.e. the model which is both the design source and the core of the control unit. To be real-time updated the disturbance state is driven by an unpredictable input vector, the noise, which can only be estimated from the model error. The uncertainty-based (or plant-based) design concerns the noise estimator, so as to prevent the model error from conveying uncertainty components (parametric, cross-coupling, neglected dynamics) which are command-dependent and thus prone to destabilizing the controlled plant, into the embedded model. Separation of the components in the low and high frequency domain by the noise estimator itself allows stability recovery and guarantee, and the rejection of low frequency uncertainty components. Two simple case studies endowed with simulated and experimental runs will help to understand the key assets of the methodolog

    Unified control/structure design and modeling research

    Get PDF
    To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed

    Decentralized Implementation of Centralized Controllers for Interconnected Systems

    Get PDF
    Given a centralized controller associated with a linear time-invariant interconnected system, this paper is concerned with designing a parameterized decentralized controller such that the state and input of the system under the obtained decentralized controller can become arbitrarily close to those of the system under the given centralized controller, by tuning the controller's parameters. To this end, a two-level decentralized controller is designed, where the upper level captures the dynamics of the centralized closed-loop system, and the lower level is an observed-based sub-controller designed based on the new notion of structural initial value observability. The proposed method can decentralize every generic centralized controller, provided the interconnected system satisfies very mild conditions. The efficacy of this work is elucidated by some numerical examples

    Quantum control theory and applications: A survey

    Full text link
    This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and quantum incoherent control. In the area of closed-loop quantum control, the paper reviews closed-loop learning control and several important issues related to quantum feedback control including quantum filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective, some references are added, published versio

    Control by model error estimation

    Get PDF
    Modern control theory relies upon the fidelity of the mathematical model of the system. Truncated modes, external disturbances, and parameter errors in linear system models are corrected by augmenting to the original system of equations an 'error system' which is designed to approximate the effects of such model errors. A Chebyshev error system is developed for application to the Large Space Telescope (LST)

    Synthesis of robust controllers and filters

    Get PDF
    This paper outlines a general framework for analysis and synthesis of linear control systems and reports on a new solution to a very general L_∞/H_∞ optimal control problem

    Approximate behaviors

    Get PDF
    The motivation for this paper is to contribute to a unified approach to modeling, realization, approximation and analysis for systems with a rich class of uncertainty structures. The specific focus is on what is the appropriate framework to model components with uncertainty, and what is the appropriate notion of approximation for such components. Components and systems are conceptualized in terms of their behaviors, which can be specified by parametrized equations. More questions are posed than are answered
    corecore