98 research outputs found

    Dynamic modelling of hexarot parallel mechanisms for design and development

    Full text link
    In this research, the kinematics, dynamics, and general closed-form dynamic formulation of the centrifugal high-G hexarot-based manipulators have been developed through the different mathematical modeling techniques. The vibrations of the mechanism have also been investigated

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Integrated Trajectory-Tracking and Vibration Control of Kinematically-Constrained Warehousing Cable Robots

    Get PDF
    With the explosion of e-commerce in recent years, there is a strong desire for automated material handling solutions including warehousing robots. Cable driven parallel robots (CDPRs) are a relatively new concept which has yet to be explored for high-speed pick-&-place applications in the industry. Compared to rigid-link parallel robots, a CDPR possesses significant advantages including: large workspace, low moving inertia, high-speed motion, low power consumption, and incurring minimal maintenance cost. On the other hand, the main disadvantages of the CDPRs are the cable’s unilateral force exerting capability and low rigidity which is resulting in undesired vibrations of their moving platform. Kinematically-constrained CDPRs (KC-CDPRs) include a special class of CDPRs which provide a considerably higher level of stiffness in undesired degrees of freedom (DOFs) via connecting a set of constrained cables to the same actuator. Nevertheless, undesired vibrations of the moving platform are still their main problem which request more attention and investigation. Dynamic modeling, stiffness optimization, vibration and trajectory-tracking control, and stiffness-based trajectory-planning of redundant KC-CDPRs are studied in this thesis. As a new technique, we separate the moving platform’s vibration equations from its desired (nominal) equations of motion. The obtained vibration model forms a linear parametric variable (LPV) dynamic system which is based for the following contributions: 1) Proposing a new tension optimization approach to minimize undesired perturbations under external disturbances in a desired direction; and demonstrating the effectiveness of kinematically-constrained actuation method in vibration attenuation of CDPRs in undesired DOFs. 2) Providing the opportunity of using a wide class of well-established robust and optimal LPV-based control methods, such as H∞ control techniques, for trajectory-tracking control of CDPRs to minimize the effect of disturbances on the robot operation; and showing the effectiveness of kinematically-constrained actuation method in control design simplification of such robots. 3) Proposing the concept of stiffness-based trajectory-planning to find the stiffness-optimum geometry of trajectories for KC-CDPRs; and designing a time-optimal zero-to-zero continuous-jerk motion to track such trajectories. All the proposed concepts are developed for a generic KC-CDPR and verified via numerical analysis and experimental tests of a real planar warehousing KC-CDPR

    Design and modeling of a space docking mechanism for cooperative on-orbit servicing

    Get PDF
    This dissertation addresses the design procedure of a docking mechanism for space applications, in particular, on-orbit servicing of cooperative satellites. The mechanism was conceived to comply with the technical specifications of the STRONG mission. The objective of this mission is to deploy satellite platforms using a space tug with electric propulsion. This mission is part of the SAPERE project, which focuses on space exploration and access to space. A docking mechanism is used for recovering the misalignments left by the guidance, navigation, and control system of the servicer satellite when approaching the customer spacecraft. However, most importantly, the mechanism must safely dissipate the energy associated with the relative velocities between the spacecraft upon contact. Five concepts were considered as possible candidates for the docking mechanism: a system based on the Stewart-Gough platform with a position controller, a Stewart-Gough platform with impedance control, a central passive mechanism (probe-drogue), a central active mechanism, and a mechanism equipped with articulated arms. Several trade-off criteria were defined and applied to the concepts. The result of this trade study was the selection of the central passive mechanism as the most balanced solution. This mechanism is composed of a probe and a conical frustum equipped with a socket to capture the probe. It was further developed and tested using mathematical models of the docking maneuver. The results of the simulations showed that the passiveness of the system prevented the docking maneuver from being fully accomplished. Consequently, a second design iteration was performed. In this new iteration, the degrees of freedom of the mechanism were increased by adding two controlled linear axes in series with the degrees of freedom of the preliminary design. The electromechanical actuators and transmissions of this mechanism were selected following the guidelines of The ECSS standards. Also, in this case, numerical models were used to assess the functioning of the docking system. The results produced by these models demonstrated the suitability of the mechanism for completing the docking operation defined by the mission’s specifications. Furthermore, the results also showed the architecture and functioning of the mechanism to be possibly suitable for other cooperative docking operations between small and mid-sized satellites. In addition, the definition of the mechanical details as well as the control architecture led to the complete design of an engineering prototype for laboratory tests. In this regard, the laboratory tests were defined with the scope of verifying the different operating modes of the docking mechanism. The test rig was designed to be equipped with a serial manipulator connected to the female part of the mechanism through a force and torque module. The objective will be to simulate the relative motion between the docking halves using different techniques to generate the trajectory of the manipulator

    Dynamically Feasible Trajectories of Fully-Constrained Cable-Suspended Parallel Robots

    Get PDF
    Cable-Driven Parallel Robots employ multiple cables, whose lengths are controlled by winches, to move an end-effector (EE). In addition to the advantages of other parallel robots, such as low moving inertias and the potential for high dynamics, they also provide specific advantages, such as large workspaces and lower costs. Thus, over the last 30 years, they have been the object of academic research; also, they are being employed in industrial applications. The main issue with cable actuation is its unilaterality, as cables must remain in tension: if they become slack, there is a risk of losing control of the EE's pose. This complicates the control of cable-driven robots and is among the most studied topics in this field. Most previous works resort to extra cables or rigid elements pushing on the EE to guarantee that cables remain taut, but this complicates robot design. An alternative is to use the gravitational and inertial forces acting on the EE to keep cables in tension. This thesis shows that the robot's workspace can be greatly increased, by considering two model architectures. Moreover, practical limits to the feasibility of a motion, such as singularities of the kinematic chain and interference between cables, are considered. Even if a motion is feasible, there is no guarantee that it can be performed with an acceptable precision in the end-effector's pose, due to the inevitable errors in the positioning of the actuators and the elastic deflections of the structure. Therefore, a set of indexes are evaluated to measure the sensitivity of the end-effector's pose to actuation errors. Finally, the stiffness of one of the two architectures is modeled and indexes to measure the global compliance of the robot due to the elasticity of the cables are presented.I robot paralleli a cavi impiegano cavi, la cui lunghezza è controllata da argani, per muovere un elemento terminale o end-effector (EE). Oltre ai vantaggi degli altri robot paralleli, come basse inerzie in movimento e la possibilità di raggiungere velocità e accelerazioni elevate, possono anche fornire vantaggi specifici, come ampi spazi di lavoro e costi inferiori. Pertanto, negli ultimi 30 anni, questi robot sono stati oggetto di ricerche accademiche e stanno trovando applicazione anche in campo industriale. Il problema principale dell'azionamento mediante cavi è che è unilaterale, poiché i cavi possono essere tesi ma non compressi: quando diventano laschi, si rischia di perdere il controllo della posa dell'EE. Questo complica il controllo dei robot ed è uno dei temi più studiati nel settore. Gli studi compiuti sinora ricorrono prevalentemente a cavi addizionali o a elementi rigidi che spingono sull'EE per garantire che i cavi rimangano tesi, ma questo complica la progettazione dei robot. Un'alternativa è sfruttare le forze gravitazionali e inerziali che agiscono sull'EE per mantenere i cavi in tensione. Questa tesi dimostra che, in questo caso, lo spazio di lavoro del robot può essere notevolmente aumentato, applicando questo concetto a due architetture modello. Inoltre, vengono considerati i limiti imposti all'effettiva realizzabilità di un movimento, come le singolarità della catena cinematica e l'interferenza tra i cavi. Anche se un movimento è fattibile, non è garantito che si possa eseguire con precisione accettabile, a causa degli inevitabili errori di posizionamento degli attuatori e delle deformazioni elastiche della struttura. Si valutano quindi alcuni indici per misurare la sensibilità della posizione dell'elemento terminale agli errori di azionamento. Infine, è modellata la rigidezza di una delle due architetture proposte e sono presentati indici per misurare la cedevolezza globale del robot dovuta all'elasticità dei cavi

    Modellbasierte Kraftregelung einer mit pneumatischen Muskeln angetriebenen Parallelplatform

    Get PDF
    In the present work, a force and torque controlled Gough-Stewart type parallel platform driven by six actuator legs was developed and evaluated. Each actuator consists of a fluidic muscle which is combined with a prestressed coil spring in order to produce compressive as well as tensile forces. The platform shall be controlled such that arbitrary force functions can be simulated. Through geometric limit analyses, it was verified that the workspace of the mobile platform suffices to the required motion range. The model-based force control of each actuator uses an exponential approximation of the transient pressure responses. The six actuator control loops are embedded into the force and torque control of the parallel manipulator. The platform-control algorithm includes a kinetostatic platform model, which com-putes the corresponding required leg forces in order to achieve the target forces and torques at the end effector of the platform. It was shown that the target end-effector forces and torques, which do not pursue rapid changes, can be produced effectively with the developed parallel manipulator and the established platform control. The steady-state performance of the developed control algorithm sufficed to the requirements of a fine-tuned force and torque control. The manipulator was designed for its future application as a physical simulator of cervical spine motion for assessing effects of, e.g., implants, surgical treatments, etc.Die vorliegende Arbeit befasst sich mit der Entwicklung und Evaluierung einer kraftgeregelten Gough-Stewart Parallelplattform, die von sechs Aktoren angetrieben wird. Die Aktoren bestehen jeweils aus einem pneumatischen Muskel und einer vorgespannten Druckfeder. Die Plattform wird so geregelt, dass beliebige Kraft- und Momentenverläufe erstellt werden können. Durch die geometrische Analyse der Endlagen wurde verifiziert, dass der geforderte Arbeitsraum durch die Plattform erreicht werden kann. Jeder einzelne Aktor wird durch eine modellbasierte Kraftregelung kontrolliert, die unter anderem die Druckbeaufschlagung eines pneumatischen Muskels durch exponentielle Funktionen annähert. Die sechs Regelschleifen der Aktoren sind der Kraft- und Momentenregelung der Parallelplattform untergeordnet. Die Plattformregelung benutzt das kinetostatische Modell der Plattform und berechnet die jeweiligen Aktorkräfte, die zum Erreichen der aktuellen Sollkraft und Sollmomentes an der Plattform notwendig sind. Es wurde gezeigt, dass die geforderten Zielkräfte und Momente effektiv mit der kraftgeregelten Plattform produziert werden können und im stationären Bereich der Sprungantworten eine genaue Kraftregelung möglich ist. Die Parallelplattform wurde konzipiert für ihre zukünftige Anwendung als physikalischer Simulator der menschlichen Halswirbelsäule, unter anderem für die präoperative Analyse chirurgischer Eingriffe, Implantate etc

    Analysis of the Workspace of Tendon-based Stewart Platforms

    Get PDF
    Tendon-based Stewart platforms are a concept for innovative manipulators where the load to move almost coincides with the payload. After an overview over the state of research and some concepts of kinematics (singularity and redundancy), the thesis discusses aspects of the technically usable workspace (positive tendon forces, limits of tension, singularity, stiffness, collisions between tendens). A representation of the controllablwe workspace by means of polynomial inequalities is developed. Optimal solutions are provided to the problem of finding appropriate force distributions in the tendons. These solutions can be discontinuous in time, but they can be approximated with continuous ones. An algorithm is given for this. From these results, a quality measure for workspace is derived and used to state design rules which help achieving good workspaces. For some systems, sample trajectories are simulated.</p

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France
    corecore