484 research outputs found

    Implementation Aspects of a Transmitted-Reference UWB Receiver

    Get PDF
    In this paper, we discuss the design issues of an ultra wide band (UWB) receiver targeting a single-chip CMOS implementation for low data-rate applications like ad hoc wireless sensor networks. A non-coherent transmitted reference (TR) receiver is chosen because of its small complexity compared to other architectures. After a brief recapitulation of the UWB fundamentals and a short discussion on the major differences between coherent and non-coherent receivers, we discuss issues, challenges and possible design solutions. Several simulation results obtained by means of a behavioral model are presented, together with an analysis of the trade-off between performance and complexity in an integrated circuit implementation

    Energy Detection UWB Receiver Design using a Multi-resolution VHDL-AMS Description

    Get PDF
    Ultra Wide Band (UWB) impulse radio systems are appealing for location-aware applications. There is a growing interest in the design of UWB transceivers with reduced complexity and power consumption. Non-coherent approaches for the design of the receiver based on energy detection schemes seem suitable to this aim and have been adopted in the project the preliminary results of which are reported in this paper. The objective is the design of a UWB receiver with a top-down methodology, starting from Matlab-like models and refining the description down to the final transistor level. This goal will be achieved with an integrated use of VHDL for the digital blocks and VHDL-AMS for the mixed-signal and analog circuits. Coherent results are obtained using VHDL-AMS and Matlab. However, the CPU time cost strongly depends on the description used in the VHDL-AMS models. In order to show the functionality of the UWB architecture, the receiver most critical functions are simulated showing results in good agreement with the expectations

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    Get PDF
    The problem of asynchronous direct-sequence code-division multiple-access (DS-CDMA) detection over the ultra-wideband (UWB) multipath channel is considered. A joint synchronization, channel-estimation, and multiuser detection scheme based on the adaptive linear minimum mean square error (LMMSE) receiver is presented and evaluated. Further, a novel nonrecursive least-squares algorithm capable of reducing the complexity of the adaptation in the receiver while preserving the advantages of the recursive least-squares (RLS) algorithm is presented

    Synchronization Technique for OFDM-Based UWB System

    Get PDF

    Ultra-Wideband Technology: Characteristcs, Applications and Challenges

    Full text link
    Ultra-wideband (UWB) technology is a wireless communication technology designed for short-range applications. It is characterized by its ability to generate and transmit radio-frequency energy over an extensive frequency range. This paper provides an overview of UWB technology including its definition, two representative schemes and some key characteristics distinguished from other types of communication. Besides, this paper also analyses some widely used applications of UWB technology and highlights some of the challenges associated with implementing UWB in real-world scenarios. Furthermore, this paper expands upon UWB technology to encompass terahertz technology, providing an overview of the current status of terahertz communication, and conducting an analysis of the advantages, challenges, and certain corresponding solutions pertaining to ultra-wideband THz communication

    A Quantitative Assessment of the Compatibility of Ultra Wideband with Broadband Wireless Access and Radar Services

    Get PDF
    In July 2008, following a request made by the Radio Spectrum Policy Unit in DG INFSO (Unit B4), a pilot phase of twelve months was agreed with Member States representatives in the Radio Spectrum Committee. During this time the Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to provide testing facilities to support the development of Community spectrum legal measures under the Radio Spectrum Decision (676/2002/EC). In the frame of this pilot phase, IPSC-JRC has successfully completed the implementation and extensive testing of both a state-of-the-art laboratory test-bed and a simulation tool, which have been specifically designed for two different coexistence studies. Firstly, the coexistence between broadband wireless access (BWA) and ultra wideband (UWB) services in the 3.5 GHz frequency band; and secondly, the coexistence between radiolocation (i.e. radar) and UWB services in the 3.1-3.4 GHz frequency band. The selection of these two coexistence scenarios is not casual and has been made based on the fact that they have been considered highly relevant in the CEPT-ECC studies on UWB mandated by the European Commission.JRC.G.6-Security technology assessmen

    Compressive Sampling based Multiple Symbol Differential Detection for UWB Communications

    Get PDF
    Compressive sampling (CS) based multiple sym- bol differential detectors are proposed for impulse-radio ultra- wideband signaling, using the principles of generalized likelihood ratio tests. The CS based detectors correspond to two communica- tion scenarios. One, where the signaling is fully synchronized at the receiver and the other, where there exists a symbol level synchro- nization only. With the help of CS, the sampling rates are reduced much below the Nyquist rate to save on the high power consumed by the analog-to-digital converters. In stark contrast to the usual compressive sampling practices, the proposed detectors work on the compressed samples directly, thereby avoiding a complicated reconstruction step and resulting in a reduction of the implemen- tation complexity. To resolve the detection of multiple symbols, compressed sphere decoders are proposed as well, for both com- munication scenarios, which can further help to reduce the sys- tem complexity. Differential detection directly on the compressed symbols is generally marred by the requirement of an identical measurement process for every received symbol. Our proposed detectors are valid for scenarios where the measurement process is the same as well as where it is different for each received symbol

    Compressive sampling based differential detection for UWB impulse radio signals

    Get PDF
    Noncoherent detectors significantly contribute to the practical realization of the ultra-wideband (UWB) impulse-radio (IR) concept, in that they allow avoiding channel estimation and provide highly efficient reception capabilities. Complexity can be reduced even further by resorting to an all-digital implementation, but Nyquist-rate sampling of the received signal is still required. The current paper addresses this issue by proposing a novel differential detection (DD) scheme, which exploits the compressive sampling (CS) framework to reduce the sampling rate much below the Nyquist-rate. The optimization problem is formulated to jointly recover the sparse received signal as well as the differentially encoded data symbols, and is compared with both the separate approach and the scheme using the compressed received signal directly, i.e., without reconstruction. Finally, a maximum a posteriori based detector using the compressed symbols is developed for a Laplacian distributed channel, as a reference to compare the performance of the proposed approaches. Simulation results show that the proposed joint CS-based DD brings the considerable advantage of reducing the sampling rate without degrading the performance, compared with the optimal MAP detector
    • …
    corecore