18 research outputs found

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    This Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing

    The University of Iowa General Catalog 2016-17

    Get PDF
    corecore