28,541 research outputs found

    The Java CoG kit grid desktop : a simple and central approach to grid computing using the graphical desktop paradigm.

    Get PDF
    Grid computing is evolving as a service based, flexible and secure resource sharing environment. Currently, with the help of Grid middleware toolkits, Grids are exposing their services through programming models and command line interfaces, requiring much technical knowledge of the backend Grid systems. Grid portals also exist, but fall short on integrating with native environments and maintaining a uniform user interface from portal to portal. In order to gain wider acceptance within the large and less technical oriented user communities, we need a homogeneous graphical user environment that supports the challenging task of providing Grid users an easy to use, seamless and transparent interface requiring minimal user participation. Motivated by the needs of these users, we are presenting the Grid Desktop based on the popularity of the graphical desktop paradigms such as KDE and Windows XP. The Java CoG Kit Grid Desktop is a user centric workspace that enhances the normal operating system desktop paradigm by interlacing Grid concepts and leveraging commodity technologies like Java. The Grid Desktop contributes to the Java CoG Kit architecture and delivers ubiquitous computing through the Java CoG Kit abstractions, portability through XML and Java Web start technologies, and a simple user interface by following the vastly popular desktop patterns such as drag-n-drop

    Integrating Existing Software Toolkits into VO System

    Full text link
    Virtual Observatory (VO) is a collection of interoperating data archives and software tools. Taking advantages of the latest information technologies, it aims to provide a data-intensively online research environment for astronomers all around the world. A large number of high-qualified astronomical software packages and libraries are powerful and easy of use, and have been widely used by astronomers for many years. Integrating those toolkits into the VO system is a necessary and important task for the VO developers. VO architecture greatly depends on Grid and Web services, consequently the general VO integration route is "Java Ready - Grid Ready - VO Ready". In the paper, we discuss the importance of VO integration for existing toolkits and discuss the possible solutions. We introduce two efforts in the field from China-VO project, "gImageMagick" and " Galactic abundance gradients statistical research under grid environment". We also discuss what additional work should be done to convert Grid service to VO service.Comment: 9 pages, 3 figures, will be published in SPIE 2004 conference proceeding

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure

    A Pure Java Parallel Flow Solver

    Get PDF
    In this paper an overview is given on the "Have Java" project to attain a pure Java parallel Navier-Stokes flow solver (JParNSS) based on the thread concept and remote method invocation (RMI). The goal of this project is to produce an industrial flow solver running on an arbitrary sequential or parallel architecture, utilizing the Internet, capable of handling the most complex 3D geometries as well as flow physics, and also linking to codes in other areas such as aeroelasticity etc. Since Java is completely object-oriented the code has been written in an object-oriented programming (OOP) style. The code also includes a graphics user interface (GUI) as well as an interactive steering package for the parallel architecture. The Java OOP approach provides profoundly improved software productivity, robustness, and security as well as reusability and maintainability. OOP allows code construction similar to the aerodynamic design process because objects can be software coded and integrated, reflecting actual design procedures. In addition, Java is the programming language of the Internet and thus Java is the programming language of the Internet and thus Java objects on disparate machines or even separate networks can be connected. We explain the motivation for the design of JParNSS along with its capabilities that set it apart from other solvers. In the first two sections we present a discussion of the Java language as the programming tool for aerospace applications. In section three the objectives of the Have Java project are presented. In the next section the layer structures of JParNSS are discussed with emphasis on the parallelization and client-server (RMI) layers. JParNSS, like its predecessor ParNSS (ANSI-C), is based on the multiblock idea, and allows for arbitrarily complex topologies. Grids are accepted in GridPro property settings, grids of any size or block number can be directly read by JParNSS without any further modifications, requiring no additional preparation time for the solver input. In the last section, computational results are presented, with emphasis on multiprocessor Pentium and Sun parallel systems run by the Solaris operating system (OS)

    The Repast Simulation/Modelling System for Geospatial Simulation

    Get PDF
    The use of simulation/modelling systems can simplify the implementation of agent-based models. Repast is one of the few simulation/modelling software systems that supports the integration of geospatial data especially that of vector-based geometries. This paper provides details about Repast specifically an overview, including its different development languages available to develop agent-based models. Before describing Repast’s core functionality and how models can be developed within it, specific emphasis will be placed on its ability to represent dynamics and incorporate geographical information. Once these elements of the system have been covered, a diverse list of Agent-Based Modelling (ABM) applications using Repast will be presented with particular emphasis on spatial applications utilizing Repast, in particular, those that utilize geospatial data
    • 

    corecore