7 research outputs found

    A Hypersequent Calculus with Clusters for Linear Frames

    Get PDF
    International audienceThe logic Kt4.3 is the basic modal logic of linear frames. Along with its extensions, it is found at the core of linear-time temporal logics and logics on words. In this paper, we consider the problem of designing proof systems for these logics, in such a way that proof search yields decision procedures for validity with an optimal complexity—coNP in this case. In earlier work, Indrzejczak has proposed an ordered hypersequent calculus that is sound and complete for Kt4.3 but does not yield any decision procedure. We refine his approach, using a hypersequent structure that corresponds to weak rather than strict total orders, and using annotations that reflect the model-theoretic insights given by small models for Kt4.3. We obtain a sound and complete calculus with an associated coNP proof search algorithm. These results extend naturally to the cases of unbounded and dense frames, and to the complexity of the two-variable fragment of first-order logic over total orders

    A Hypersequent Calculus with Clusters for Tense Logic over Ordinals

    Get PDF
    Prior\u27s tense logic forms the core of linear temporal logic, with both past- and future-looking modalities. We present a sound and complete proof system for tense logic over ordinals. Technically, this is a hypersequent system, enriched with an ordering, clusters, and annotations. The system is designed with proof search algorithms in mind, and yields an optimal coNP complexity for the validity problem. It entails a small model property for tense logic over ordinals: every satisfiable formula has a model of order type at most omega^2. It also allows to answer the validity problem for ordinals below or exactly equal to a given one

    A Hypersequent Calculus with Clusters for Data Logic over Ordinals

    Get PDF
    We study freeze tense logic over well-founded data streams. The logic features past-and future-navigating modalities along with freeze quantifiers, which store the datum of the current position and test data (in)equality later in the formula. We introduce a decidable fragment of that logic, and present a proof system that is sound for the whole logic, and complete for this fragment. Technically, this is a hy-persequent system enriched with an ordering, clusters, and annotations. The proof system is tailored for proof search, and yields an optimal coNP complexity for validity and a small model property for our fragment

    Goal-directed proof theory

    Get PDF
    This report is the draft of a book about goal directed proof theoretical formulations of non-classical logics. It evolved from a response to the existence of two camps in the applied logic (computer science/artificial intelligence) community. There are those members who believe that the new non-classical logics are the most important ones for applications and that classical logic itself is now no longer the main workhorse of applied logic, and there are those who maintain that classical logic is the only logic worth considering and that within classical logic the Horn clause fragment is the most important one. The book presents a uniform Prolog-like formulation of the landscape of classical and non-classical logics, done in such away that the distinctions and movements from one logic to another seem simple and natural; and within it classical logic becomes just one among many. This should please the non-classical logic camp. It will also please the classical logic camp since the goal directed formulation makes it all look like an algorithmic extension of Logic Programming. The approach also seems to provide very good compuational complexity bounds across its landscape

    A Hypersequent Calculus with Clusters for Linear Frames

    Get PDF
    International audienceThe logic Kt4.3 is the basic modal logic of linear frames. Along with its extensions, it is found at the core of linear-time temporal logics and logics on words. In this paper, we consider the problem of designing proof systems for these logics, in such a way that proof search yields decision procedures for validity with an optimal complexity—coNP in this case. In earlier work, Indrzejczak has proposed an ordered hypersequent calculus that is sound and complete for Kt4.3 but does not yield any decision procedure. We refine his approach, using a hypersequent structure that corresponds to weak rather than strict total orders, and using annotations that reflect the model-theoretic insights given by small models for Kt4.3. We obtain a sound and complete calculus with an associated coNP proof search algorithm. These results extend naturally to the cases of unbounded and dense frames, and to the complexity of the two-variable fragment of first-order logic over total orders
    corecore